Abstract
Hydrocephalus is a neurological disease which causes ventricular dilation due to abnormalities in the cerebrospinal fluid (CSF) circulation. Although treatment via a CSF shunt in the brain ventricles has been performed, poor rates of patient responses continue. Thus, to aid surgeons in hydrocephalus treatment planning, we propose a geometric computational approach for tracking hydrocephalus ventricular boundary evolution via the level set method and a mesh warping technique. In our previous work [1], we evolved the ventricular boundary in 2D CT images which required a backtracking line search for obtaining valid intermediate meshes. In this paper, we automatically detect the ventricular boundary evolution for 2D CT images. To help surgeons determine where to implant the shunt, we also compute the brain ventricle volume evolution for 3D MR images using our approach.
The work of the first author was funded by NSF CAREER Award OCI-1054459; the work of the second author was funded in part by NSF CAREER Award OCI-1054459 and NSF grant CNS-0720749.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Park, J., Shontz, S., Drapaca, C.: A combined level set/mesh warping algorithm for tracking brain and cerebrospinal fluid evolution in hydrocephalic patients. In: Zhang, J. (ed.) Image-based Geometric Modeling and Mesh Generation. Lecture Notes in Computational Vision and Biomechanics. Springer (to apppear, 2012)
West, J.: Application of the level set method to hydrocephalus: Simulating the motion of the ventricles. Masterâs thesis, University of Waterloo (2004)
Shewchuk, J.: Triangle: Engineering a 2D quality mesh generator and delaunay triangular. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203â222. Springer, Heidelberg (1996)
Brewer, M., Diachin, L., Knupp, P., Leurent, T., Melander, D.: The Mesquite mesh quality improvement toolkit. In: Proc. of the 12th International Meshing Roundtable, Sandia National Laboratories, pp. 239â250 (2003)
Munson, T.: Mesh shape-quality optimization using the inverse mean-ratio metric. Math. Program 110, 561â590 (2007)
Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: BrainWeb: Online interface to a 3D MRI simulated brain database, NeuroImage, In: Proc. of 3rd International Conference on Functional Mapping of the Human Brain, vol.5(4), Part 2/4, S425, (1997).
Zhu, S., Xia, X., Zhang, Q., Belloulata, K.: An image segmentation algorithm in image processing based on threshold segmentation. In: Proc. of the 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 673â678 (2007)
Fabijanska, A.: Variance filter for edge detection and edge-based image segmentation. In: Proc. of 7th International Conference on Perspective Technologies and Methods in MEMS Design, pp. 151â154 (2011)
Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics (1999)
Narayanan, K., Karunakar, Y.: 3-D reconstruction of tumors in MRIs. International Journal of Research and Reviews in Signal Acquisitionand Processing 1(2) (2011)
Si, H.: TetGen: A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator Version 1.4 (2006)
Roy, S., Heltai, L., Drapaca, C.S., Costanzo, F.: An immersed finite element method approach for brain Biomechanics. To Appear in the Proc. of SEM (2012)
Choi, J.U., Kim, D.S., Kim, S.H.: Endoscopic surgery for obstructive hydrocephalus. Yonsei Med. J. 40(6), 600â607 (1999)
Drapaca, C.S., Tenti, G., Rohlf, K., Sivaloganathan, S.: A quasi-linear viscoelastic constitutive equation for the brain: Application to hydrocephalus. J. Elasticity 85, 65â83 (2006)
Hakim, S., Venegas, J., Burton, J.: The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: Mechanical interpretation and mathematical model. Surg. Neurol. 5, 187â210 (1976)
Hydrocephalus statistics (2008), http://www.ghrforg.org/faq.htm
Kellie, G.: Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans. Med-Chir. Soc., 1â84 (1824)
Milhorat, T.H.: Pediatric Neurosurgery. Contemporary Neurology Series 16 (1978)
Miller, K., Chinzei, K.: Constitutive modeling of brain tissue - experiment and theory. J. Biomech. 30, 1115â1121 (1997)
Monro, A.: Observations on Structure and Functions of the Nervous System. Creech and Johnson, Edinburgh (1783)
Nagashima, T., Tamaki, N., Matsumoto, S., Horwitz, B., Seguchi, Y.: Biomechanics of hydrocephalus: A new theoretical model. Neurosurg. 21(6), 898â904 (1987)
Sivaloganathan, S., Tenti, G., Drake, J.: Mathematical pressure volume models of the cerebrospinal fluid. Appl. Math. Comput. 94, 243â266 (1998)
Tenti, G., Sivaloganathan, S., Drake, J.: Brain biomechanics: steady-state consolidation theory of hydrocephalus. Can. App. Math. Q. 7(1), 111â124 (1999)
Tuli, S., Alshail, E., Drake, J.: Third ventriculostomy versus cerebrospinal fluid shunt as a first procedure in pediatric hydrocephalus. Pediatr. Neurosurg. 30(1), 11â15 (1999)
Tully, B., Ventikos, Y.: Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics. IEEE Trans. Biomed. Eng. 56(6), 1644â1651 (2009)
Wilkie, K., Drapaca, C.S., Sivaloganathan, S.: A theoretical study of the effect of ventricular pressure pulsations on the pathogenesis of hydrocephalus. Submitted to Appl. Math. Comput. (2009)
Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12â49 (1988)
Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vision 50, 271â293 (2002)
Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer (2003)
Mitich, A., Ayed, I.: Variational and level set methods in image segmentation. Springer Topics in Signal Processing, vol. 5. Springer (2010)
Persson, P.: Mesh size functions for implicit geometries and PDE-based gradient limiting. Engineering with Computers 22, 95â109 (2006)
Strang, G., Persson, P.: Circuit simulation and moving mesh generation. In: Proc. of Int. Symp. on Comm. and Inform. Tech., ISCIT 2004 (2004)
Bah, M., Nair, P., Browne, M.: Mesh morphing for finite element analysis of implant positioning in cementless total hip replacement. Med. Eng. Phys. 31, 1235â1243 (2009)
Baldwin, M., Langenderfer, J., Rullkoetter, P., Laz, P.: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Comput. Meth. Prog. Bio. 97, 232â240 (2010)
Liu, Y., DâArceuil, H., He, J., Duggan, M., Gonzalez, G., Pryor, J., de Crespigny, A.: A nonlinear mesh-warping technique for correcting brain deformation after stroke. Magn. Reson. Imaging 24, 1069â1075 (2006)
Sigal, I., Yang, H., Roberts, M., Downs, J.: Morphing methods to parameterize specimen-specific finite element model geometries. J. Biomech. 43, 254â262 (2010)
Chan, T., Vese, L.: Active contours without edges. IEEE T. Image. Process. 10 (2001)
Baker, T.: Mesh movement and metamorphosis. In: Proc. of the Tenth International Meshing Roundtable, Sandia National Laboratories, pp. 387â396 (2001)
Shontz, S., Vavasis, S.: Analysis of and workarounds for element reversal for a finite elementbased algorithm for warping triangular and tetrahedral meshes. BIT, Numerical Mathematics 50, 863â884 (2010)
Wu, Y.: Matlab implementation of the Chan Vese active contour without edges method (2011), http://www.mathworks.com/matlabcentral/fileexchange/23445
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Âİ 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Park, J., Shontz, S.M., Drapaca, C.S. (2012). Automatic Boundary Evolution Tracking via a Combined Level Set Method and Mesh Warping Technique: Application to Hydrocephalus. In: Levine, J.A., Paulsen, R.R., Zhang, Y. (eds) Mesh Processing in Medical Image Analysis 2012. MeshMed 2012. Lecture Notes in Computer Science, vol 7599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33463-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-33463-4_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33462-7
Online ISBN: 978-3-642-33463-4
eBook Packages: Computer ScienceComputer Science (R0)