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Abstract. This paper addresses the refactoring of an agricultural vehi-
cle localization system and its deployment and field-testing in apple or-
chards. The system enables affordable precision agriculture in tree fruit
production by providing the vehicle’s position in the orchard without the
use of expensive differential GPS. The localization methodology depends
only on the wheel and steering encoders and the laser rangefinder already
on the vehicle for row following, thus adding zero hardware cost to the
overall setup. It employs an Extended Kalman Filter to integrate the
information from the sensors, with the pose being predicted via encoder
odometry and updated via point and line features detections. The ob-
jective of this paper is to describe the complete refactoring of the initial
proof-of-concept localization system, with the goal of making it robust,
modular and reusable. Field test results indicate that the final system
has sufficient accuracy for deployment of autonomous vehicles in tree
fruit orchards.

Keywords: Autonomous Agricultural Vehicles, GPS-Free Localization,
Extended Kalman Filter.

1 Introduction

Specialty crops are defined in US as fruits, vegetables, tree nuts, dried fruits and
nursery crops, including floriculture. In 2007 they accounted for almost 17% of
the US agricultural market, or US$50 billion, with fruit and tree nut production
alone generating about 13% of all farm cash receipts [6]. Within specialty crops,
tree fruit production is particularly challenged by the large cost of labor and its
seasonal needs-for example, seven times more apple orchard workers are needed
in the state of Washington during harvest season than during the winter pruning
season. Today, there is a real opportunity to introduce automation solutions into
tree fruit production to lower labor costs, smooth out labor requirements, and
increase production efficiency. This opportunity is compounded by the introduc-
tion, in the past twenty years, of high-density “fruit wall” planting architectures.
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Autonomous vehicles driving down along these rows of structured trees can mow
and spray, as well as carry workers pruning, thinning, performing tree mainte-
nance, and harvesting. Figure [[l shows two of the four vehicles we developed and
deployed since 2008. Together, they logged a combined 350 km in research and
commercial apple orchards in several US states. The vehicle on the left, Laurel,
is a development platform where we test new row following and turning and lo-
calization methods and algorithms before integrating them on the other vehicles.
It is equipped with wheel and steering encoders, laser range finders, cameras,
and a differential GPS receiver used to generate ground truth for driving and
localization experiments. The vehicle on the right, Cascade, is a barebones ver-
sion with only the encoders and the laser. Cascade and its “twin” Allegheny are
equipped with a scissors lift from where workers prune, thin, tie trees to wires,
place pheromone dispensers, etc. They are used on a weekly basis by Extension
educators and growers in time trials comparing the performance of workers on
the platform versus workers on ladders.

Fig.1. (Left) Autonomous orchard vehicle “Laurel.” This experimental vehicle is
equipped with encoders, laser rangefinder, cameras, and a differential GPS receiver for
ground truth. (Right) “Cascade” in use by workers at Allan Bros. Orchards, in Prosser,
WA, to thin green fruit. Time trials show that work on the top half of the trees, when
conducted from the autonomous platform, can be more than twice as efficient than
from ladders.

Vehicle localization is key to introduction of autonomous vehicles in tree fruit
orchards, for various reasons. First, it enables precision agriculture applications
similar to those performed today in field crops (corn, wheat, soy, etc.). For exam-
ple, with a vehicle that knows how much fertilizer or herbicide each tree received,
growers can correlate future yield with past maintenance records, and thus be
able to manage production at a much finer scale. Second, it enables practices
that are prohibitively costly today, such as counting and sizing fruit on the tree
and creating yield maps. Last, but not least, accurate vehicle localization may in-
creases accuracy of row following. While our vehicles’ row following performance
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is satisfactory, the current navigation system employs a pure-pursuit approach
[1] and does not rely on the vehicle’s pose inside the orchard. This information
could improve the navigation reliability and safety.

In four years of work developing autonomous orchard vehicles for the apple
industry, we concluded that a key requirement is to be able to localize the vehicle
within a half-meter of its true position. Such sub-metric accuracy can be obtained
with differential GPS receivers, but their cost is unrealistic when compared to
the target cost of the vehicle itself. Standard GPS is cheap, but may provide
position errors of up to 20 m, or the equivalent to four of five rows of trees.
Besides, GPS signals get degraded under the heavy canopies adopted by some
growers.

The original localization system [34] is a proof-of-concept implementation
designed to validate the hardware and the extended Kalman filter (EKF) algo-
rithm. It presented the accuracy necessary for operations in a variety of typical
orchards. This paper describes the refactoring of the localization software in a
way that makes it robust, modular and reusable. Our approach is to list the
main shortcomings of the initial implementation and demonstrate, via actual
experimental results, how they were addressed in the refactored software. The
new system was validated over 5 km of driving in orchards in Pennsylvania and
Washington.

The paper is structured as follows. Section 2 presents in more detail the au-
tonomous orchard vehicle used in this work. Section 3 presents the localization
system from a functional perspective. Section 4 discusses the original imple-
mentation and the results it affords. Section 5 presents the refactored software,
and Section 6 presents the experimental results obtained. Section 7 presents an
analysis of the results and a discussion on future work.

2 Autonomous Orchard Vehicle

The base vehicle used in this work is Laurel (Figure [ left). It is based on the
Toro MDE eWorkman electric utility vehicle, retrofitted to function either in
manual or drive-by-wire mode. Laurel is a research vehicle, where we implement
and test orchard navigation technologies before they are ported to others. It is
important to note that, while Laurel is equipped with a high-accuracy Applanix
POS 220 LV GPS-assisted inertial navigation system, we do not use it for the
localization estimation proposed here. The Applanix data is used only during
the EKF setup, including the process of mapping the orchard block where we
operate. It also provides ground truth so we can assess the performance of the lo-
calization system. The presence of the Applanix does not constitute an operation
limitation, as explained in Section 7.

The relevant sensors for this work are: steering and wheel encoders with lin-
ear resolution of 2.33 x 10~° m/tick and angular resolution of 0.38°/tick; one
SICK LMS 291 laser rangefinder with 180° field-of-view, 1° resolution, and max-
imum scanning range of 80 m; and a SICK LMS 111 laser rangefinder with 270°
field-of-view, 0.5° resolution, and maximum scanning range of 30 m. The on-
board computer is a rugged, waterproof, industrial unit with an Intel Core 2
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Duo 1.6 GHz CPU with 4GB DDR2 DRAM from Small PC. The localization
software runs on Ubuntu Linux, with the message passing provided by the Robot
Operating System (ROS).

3 Localization Methodology

The localization system estimates the position of the vehicle in the orchard using
an Extended Kalman Filter. The orchard terrain is assumed to be locally flat, and
the pose is defined as © = [z, y,,0,]7, where z,., y,. represent the vehicle’s planar
position and 6, its orientation with respect to an initial predefined configuration.

In the prediction step, the EKF uses the wheel and steering encoders to esti-
mate the vehicle’s pose. In the update step, it uses point and line features from
the environment, obtained from laser data, to correct the initially estimated
value. The system’s simplified functional architecture is illustrated in Figure 21

The proposed solution assumes the vehicle starts in a known initial position
and orientation with respect to a previously-built reference map that contains
the tree rows’ ending positions. The current procedure used to create the map

Processing EXtend"?d Kalman Pose Estimation
Filter
Sensing Computing | | Odometry
Odometry | | Prediction Step References
s
Measurements Detecting | | Point Feature Update Initial Position
Point Features | | Step
H easuroments g CrohardMap |
Detecting | [ Line Feature Update
Line Features | | Step

Fig. 2. Functional architecture of the localization system. The Extended Kalman Filter
uses data from encoders and laser rangefinder to estimate the vehicle’s pose. The
software uses as reference the initial position and an orchard map obtained off-line.

Fig. 3. (Left) Apple orchard with reflective tape installed on the row ends for mapping
purposes. (Right) The resulting orchard map, used for vehicle localization.
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consists on driving the vehicle around the orchard and combining the measure-
ments from the Applanix and lower laser to obtain the position of landmark
reflective tape placed on the row ends (Figure B]).

4 Original Localization Estimation System

All of the orchard vehicle’s software runs on Willow Garage’s ROS, an open
source framework for robotic system development, which in turn runs on Ubuntu
Linux [5]. ROS is a useful tool because it provides a structured communication
layer above Linux. A particularly useful ROS feature is the recording of messages
in “bag” files. With them, it is possible to playback the messages to recreate past
experiments, which is specially important during software implementation and
debugging.

Each software module is implemented as a ROS node. The nodes exchange
information by subscribing and publishing messages to ROS topics. The local-
ization node subscribes to the sensor topics, receiving input measurements to
run the EKF. After processing the information, the node publishes the pose
estimation into another topic.

The localization node begins operation by loading the orchard map. It then
acquires the vehicle position and subscribes to different sensor topics. After ini-
tialization, the node enters a polling mode running at 100 Hz. At every cycle,
it checks for new measurement messages. As they arrive, it calls the respective
EKF steps - prediction for encoder measurements and update for point and line
features. The odometry messages are published at 45 Hz, laser measurements

Vehicle Trajectory Vehicle Trajectory Vehicle Trajectory Vehicle Trajectory
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Fig. 4. Original localization system results using playback data. The left image shows
a good result where the system achieved the necessary sub-metric accuracy. The other
images contain results with progressive faults, with playback data yielding different
results every time it is processed off-line. The errors are a result of the manner with
which ROS handles messages.
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for landmark detection at 75 Hz and line feature detections at 15 Hz. The lo-
calization node publishes a new pose message at each polling cycle that invokes
the Kalman filter.

To evaluate the performance of the original localization system, we used play-
back data from bag files recorded during experiments conducted in September
2010 in our half-acre experimental nursery. This is a block with eight tree rows
54 m long and 3.5 m wide. The original implementation is able to reach the
required sub-metric accuracy, as presented on the left in Figure [l

The original software, however, is not always consistent, presenting different
results when processing off-line the same playback data (Figure @ center and
right). The different results are caused by problems related to the ROS messag-
ing mechanism, which may lose messages or process them out of chronological
order. Despite achieving the accuracy required for the task we are pursuing, the
original localization system implementation is not robust to ROS’s asynchronous
messaging scheme.

5 Refactored Localization Estimation System

Once the localization approach was validated, we set out to refactor the code
so as to deal with the ROS message passing inefficiencies and also to make
it modular and reusable in future projects. The refactored localization system
implements the EKF through object-oriented software written in C++.

In the new version, the localization software is still implemented as a ROS
node. As before, it begins operation loading the orchard map, acquiring the
vehicle’s position and subscribing to different sensor topics.

The difference is after initialization, when the new localization software op-
erates similarly to an interruption-based system, in comparison to the original
program. This is implemented using the command ros::spinOnce() inside a while
loop running at 1 KHz. Whenever the node receives a ROS message, it calls the
correspondent EKF step. As before, the odometry messages trigger the predic-
tion step, and the point and line features activate the update step.

The software main algorithm is briefly described in the following pseudo-code:

global applanixDataMsg, encoderDataMsg, pointFeatureDatalMsg, lineFeatureDataMsg;

void treatRosApplanix(applanixDataMsg) ;
void treatRosEncoder (encoderDataMsg) ;
void treatRosPointFeat(pointFeatDataMsg);
void treatRosLineFeat(lineFeatDataMsg);

int main () {
poseEstimation = [x, y, thetal;

loadMap();
getInitialPosition(applanixDataMsg) ;

ros: :Subscriber applanixDataSubscriber => treatRosApplanix(applanixDataMsg) ;

ros: :Subscriber encoderDataSubscriber => treatRosEncoder (encoderDataMsg) ;
ros::Subscriber pointFeatDataSubscriber => treatRosPointFeature(pointFeatDataMsg) ;
ros: :Subscriber lineFeatDataSubscriber => treatRosLineFeature(lineFeatDataMsg);
ros::Publisher poseEstimationDataPublisher => poseEstimationDataMsg;
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while(true){
ros::spinOnce();
loop_rate.sleep(1KHz) ;

if encoderDatalMsg
odometryPredictionStep(encoderDataMsg, poseEstimation);

if pointFeatureDatalMsg
pointFeatUpdateStep(pointFeatDataMsg, poseEstimation);

if lineFeatureDatalMsg
lineFeatUpdateStep(lineFeatDataMsg, poseEstimation);

poseEstimationDataPublisher (poseEstimation);
¥
}

Considering the frequencies at which each component of the localization sys-
tem runs (see Section 4), we expected it would be capable of processing all sen-
sor measurements. During debugging procedures, however, we identified that the
node loses 5% of the odometry and line feature messages. The problem is aggra-
vated for landmark detection, with 50% of the messages not being processed. We
also noticed that the localization software does not receive the different sensor
messages in chronological order.

These problems were reported to the ROS mailing list (See nttp://bit.1y/Lggvu7).
In response, we were informed by Willow Garage that the time when messages
buffers are serviced can vary greatly, independently from the frequency of the
main node. They also confirmed that when receiving messages from different
sources, ROS does not guarantee the order in which they will be received and
processed.

To solve the problems, we used vectors to store messages coming from different
sensors. An algorithm looks into the vectors and selects which message should
be sent to the localization node. The code does not lose measurements, and also
selects the messages in chronological order before calling the EKF steps.

During the software refactoring, the code was divided into auxiliary functions
and files, increasing its modularity, and better documented. The final software
retains the accuracy of the original one and is simpler, clearer, easier to under-
stand, and easier to adapt to other applications.

Figure [l presents the result obtained with the refactored software when pro-
cessing the same playback data in Figuredl After the refactoring, the localization
system presents consistent results and yields the exact same results every time
it is processed off-line.

Because of the line feature corrections, the maximum crosstrack error is about
0.5 m. The small errors are caused by the line detection process. The line feature
parameters corresponding to the tree rows are estimated by a particle filter [2].
Due to the canopy shape, the parameters are constantly changing. When the
vehicle drives in straight line, the dead reckoning longtrack error accumulates due
to small errors propagation. The maximum longtrack error of 0.55 m corresponds
to 1% of the row length, compatible with the expected wheel slippage deviation.
The error is corrected at the row ending, when the vehicle identifies a landmark.
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Fig. 5. Trajectory and position error obtained by the refactored localization software
processing playback data acquired during field tests

Figure [0] presents the distribution of errors for the experiment in Figure
The crosstrack error is within 30 cm of the ground truth for more than 95% of
the time. The 30 (99.7% of final value) interval is 0.45 m. The longtrack error is
also lower than 0.5 m during almost the entire operation, except at a few isolated
locations. The position estimate is within 30 cm of ground truth for more than
90% of the time. The 30 (99.7% of the steady state) interval is 0.5 m.
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Fig. 6. Crosstrack and longtrack error distributions obtained with the refactored lo-
calization software. The maximum crosstrack error is about 0.5 m and the localization
estimate is within 30 cm of ground truth for more than 95% of the time. The longtrack
error is also within 30 cm of ground truth for more than 90% of the time.

6 Experiments in Apple Orchards

To assess the performance of the refactored localization system, we conducted
several field tests at Washington State University’s Sunrise Orchard in Rock
Island, WA, and Ridgetop Orchards in Fishertown, PA. At both locations we
drove the vehicle manually inside the tree rows, with the goal of verifying the
localization system’s robustness and functionality over long-term operations in
real crops.
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Figure [ presents two representative results at Sunrise; Table [Il summarizes
three of them. The vehicle traveled a total of 5,924 m in blocks 9A, 9B and
9C, and its position was estimated with sub-metric precision. The mean errors
range from 0.17 to 0.23 m, and all the 30 distances are less than 1 m. The
good results are in part due to the flat, dry terrain, which don’t generate much
wheel slippage, and short tree rows, which brings the landmarks into view more
quickly, reducing odometry-associated errors. All were obtained on-line as the
vehicle drove in between rows.

4 ———

P

-80 60 -40 20 0
East (m)

Fig. 7. Trajectory obtained by the localization system at Sunrise Orchard’s blocks 9A
and 9B. The estimated position is plotted in blue, and the Applanix ground truth data
is plotted in red.

Table 1. Summary of experiments conducted at Sunrise

Test site Block 9A Block 9B Block 9C (*)
Total distance [m] 1898 2136 1893
Mean longtrack error [m]  0.22 0.19 0.21
Mean crosstrack error [m]  0.23 0.17 0.22
3o longtrack error [m] 0.91 0.65 0.98
30 crosstrack error [m] 0.76 0.51 0.72

(*) Not shown in Figure 7.

Figure [8 presents the results obtained at Ridgetop Orchards. This is a much
more challenging environment, with rows that are 300 m long and very steep (up
to 12.5° of inclination). At Ridgetop we traversed four rows. When the robot
is driving inside the rows, there is no correction for the longtrack error and the
encoder odometry drifting accumulates. The maximum long track error is about
2 m when the vehicle is going downhill and up to 6 m when going uphill, again
compatible with wheel odometry.
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Fig. 8. Trajectory and position error obtained by the localization system at Ridgetop
Orchards

7 Conclusion and Future Work

The localization system described in this paper is part of the larger goal of
demonstrating the feasibility of operating autonomous orchard vehicles in com-
mercial tree fruit production environments year-round. We started with a system
that provided the necessary accuracy for most operations and refactored it to
end with a more reliable, modular, and reusable version. The documentation
includes three user manuals with detailed instructions on how to generate the
orchard map, execute the localization software, and analyze the results. Fifteen
experimental data sets are included in the documentation for development and
test of future improvements

Experiments conducted in apple orchards showed that the new localization
system presents satisfactory results, obtaining sub-metric precision in locations
with relatively flat terrain. It does not meet the required accuracy, however,
when operating in very long or very steep rows. The former cause EKF updates
to take too long to kick in, leading to odometry drift; the latter causes wheel
slippage that confound the odometry. In the worst case, when driving uphill on a
very long and steep row, the localization error reached 6 m, or 2% of the traveled
linear distance.

One possible solution to improve accuracy consists on computing odometry
using cameras, because visual odometry is not affected by wheel slippage. We
have begun work in this direction and expected to enhance the localization sys-
tem accuracy by one order of magnitude.

The localization methodology was tested with data from two laser rangefind-
ers, one detecting point and the other detecting line features. In an actual field
deployment, only one laser rangefinder would have to provide data to both the
navigation and localization. Also, Laurel is the only vehicle using the Applanix
high-accuracy localization system. The others rely only on the system presented
here to obtain position estimation. The vehicles do not have GPS, requiring
alternative solutions to obtain the initial position and also the orchard map.

For initialization purposes, the vehicle can start the operation in a known posi-
tion. Regarding the mapping requirement, one procedure already in use consists
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on placing a low-cost GPS receiver at each landmark, or even only the four cor-
ners of the block, for about one hour, and correcting the position data with RTK
post-processing data from the USGS. In the future, the mapping procedure may
even be eliminated entirely and replaced with a simultaneous localization and
mapping (SLAM)-type method.
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