Skip to main content

Body Pixel Classification by Neural Network

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7508))

Included in the following conference series:

  • 3668 Accesses

Abstract

Body pixel classification is a multiclass pixel by pixel image segmentation problem that aims to classify each image pixel to its correspondent human body part. In this article we initially adopted for this problem a Multilayer Perceptron neural network (MLP) classifier using back propagation algorithm to learn network weights and biases. Then confidence intervals based on diffMax criterion are computed in order to make classification more certain. This criterion is computed by the difference between the first and second maximum value of MLP output vector.

A 92 % correct classification rate was achieved after applying confidence classification. The classification result will be integrated as an input to a human posture recognition system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rosales, R., SclaroffInferring, S.: Body Pose without Tracking Body Parts. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  2. Lacassagne, L., Manzanera, A.: Motion Detection: Fast and robust algorithms for embedded systems. In: Proceedings of the 16th IEEE International Conference on Image Processing (2009)

    Google Scholar 

  3. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-Time Human Pose Recognition in Parts from Single Depth Images. In: Proceedings of the IEEE Computer Vision and Pattern Recognition Conference, pp. 1297–1304 (2011)

    Google Scholar 

  4. Piccardi, M.: Background Subtraction Techniques:a review. In: Proceedings of the International Conference on Systems, Man and Cybernetics, pp. 3199–3104 (2004)

    Google Scholar 

  5. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  6. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Mortensen, E.N., Deng, H., Shapiro, L.: A SIFT descriptor with global context. In: Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  8. Amsaleg, L., Gros, P., Mezhoud, R.: Mise en base d’images indexées par des descripteurs locaux: problèmes et perspectives. In: Research report No. 1316. Institut de Recherche en Informatique et Systèmes Aléatoires, Rennes, France (2000)

    Google Scholar 

  9. Hamburg, M., Young, P.: Statistical analysis for decision making, 6th edn., Edition Technip. (1993) ISBN: 0-03-096914-X

    Google Scholar 

  10. Porle, R.R., Chekima, A., Wong, F., Sainarayanan, G.: Wavelet-based skin segmentation for detecting occluded arms in human body pose modelling system. In: Proceedings of the International Conference on Intelligent and Advanced Systems, pp. 764–769 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaabani, H., Filali, W., Simon, T., Lerasle, F. (2012). Body Pixel Classification by Neural Network. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33503-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33503-7_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33502-0

  • Online ISBN: 978-3-642-33503-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics