Skip to main content

A Modified Selective Attention Model for Salient Region Detection in Real Scenes

  • Conference paper
Pattern Recognition (CCPR 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 321))

Included in the following conference series:

  • 3375 Accesses

Abstract

One of the most important and essential parts of image processing tasks in computer vision is to predict the regions of interest that is the most attractive and also representative salient ones. This task can be realized effortless by the human visual system via the function of selective attention. In this paper, we introduced a set of new visual features, including contract, entropy, and local feature change into the Itti bottom-up model. We used a set of qualitative and quantitative analysis to demonstrate the effectiveness of the proposed approach on a large dataset with different scenes, and the results show that the modified Itti model combined with the new features can improve greatly the efficiency of salient region detection in real scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985)

    Google Scholar 

  2. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  3. Walther, D., Koch, C.: Saliency Toolbox 2.0. (2006)

    Google Scholar 

  4. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: CVPR, pp. 1–8. IEEE (2007)

    Google Scholar 

  5. Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, vol. 18, p. 155 (2006)

    Google Scholar 

  6. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, vol. 19, p. 545 (2007)

    Google Scholar 

  7. Rajashekar, U., van der Linde, I., Bovik, A.C., Cormack, L.K.: Foveated analysis of image features at fixations. Vision Research 47(25), 3160–3172 (2007)

    Article  Google Scholar 

  8. Rajashekar, U., van der Linde, I., Bovik, A.C., Cormack, L.K.: GAFFE: A gaze-attentive fixation finding engine. IEEE Transactions on Image Processing 17(4), 564–573 (2008)

    Article  MathSciNet  Google Scholar 

  9. Parkhurst, D.J., Niebur, E.: Scene content selected by active vision. Spatial Vision 16(2), 125–154 (2003)

    Article  Google Scholar 

  10. Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest: Comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 970–982 (2000)

    Article  Google Scholar 

  11. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19(9), 1395–1407 (2006)

    Article  MATH  Google Scholar 

  12. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: ICCV, pp. 2106–2113. IEEE (2009)

    Google Scholar 

  13. Kootstra, G., Nederveen, A., De Boer, B.: Paying attention to symmetry. In: Proceedings of the British Machine Vision Conference, pp. 1115–1125 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, S., Li, Y. (2012). A Modified Selective Attention Model for Salient Region Detection in Real Scenes. In: Liu, CL., Zhang, C., Wang, L. (eds) Pattern Recognition. CCPR 2012. Communications in Computer and Information Science, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33506-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33506-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33505-1

  • Online ISBN: 978-3-642-33506-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics