Skip to main content

Structure Sparsity for Multi-camera Gait Recognition

  • Conference paper
Pattern Recognition (CCPR 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 321))

Included in the following conference series:

  • 3390 Accesses

Abstract

With the rapid development of surveillance technology, there are often several cameras in one scenario. The multi-camera usage to perform gait recognition becomes a challenge problem. This paper studies multi-camera gait recognition via structure sparsity. For the multi-camera structure in the training set, we propose a structure sparsity algorithm to learn informative and discriminative sparse representations; and for the structure in the testing set, we develop a new classification criteria based on the reconstruction error of learned sparse representations. In addition, we learn a dictionary from the original gait data to further improve recognition accuracy meanwhile reduce computational cost. Experimental results show that the proposed method can efficiently deal with the multi-camera gait recognition problem and outperforms the state-of-the-art sparse representation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette Analysis-based Gait Recognition for Human Identification. TPAMI 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  2. Zhang, R., Vogler, C., Metaxas, D.: Human Gait Recognition. In: CVPRW, 18 pages (2004)

    Google Scholar 

  3. Zhao, G., Liu, G., Li, H., Pietikainen, M.: 3D Gait Recognition using Multiple Cameras. In: FGR, pp. 529–534 (2006)

    Google Scholar 

  4. Han, J., Bhanu, B.: Individual Recognition Using Gait Energy Image. TPAMI 28(2), 316–322 (2006)

    Article  Google Scholar 

  5. Tao, D., Li, X., Wu, X., Maybank, S.J.: General Tensor Discriminant Analysis and Gabor Features for Gait Recognition. TPAMI 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  6. Wang, C., Zhang, J., Wang, L., Pu, J., Yuan, X.: Human Identification Using Temporal Information Preserving Gait Template. TPAMI (99) (2011)

    Google Scholar 

  7. Lei, Z., Chu, R.F., He, R., Liao, S.C., Li, S.: Face Recognition by Discriminant Analysis with Gabor Tensor Representation. In: Advances in Biometrics (2007)

    Google Scholar 

  8. Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Support Vector Regression for Multi-view Gait Recognition based on Local Motion Feature Selection. In: CVPR, pp. 974–981 (2010)

    Google Scholar 

  9. Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Gait Recognition under Various Viewing Angles based on Correlated Motion Regression. TCSVT (99), 1–1 (2012)

    Google Scholar 

  10. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. TPAMI 31(2), 210–227 (2009)

    Article  Google Scholar 

  11. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse Representation for Computer Vision and Pattern Recognition. Proceedings of the IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  12. He, R., Zheng, W.-S., Hu, B.-G., Kong, X.W.: A Regularized Correntropy Framework for Robust Pattern Recognition. Neural Computation 23(8), 2074–2100 (2011)

    Article  MATH  Google Scholar 

  13. He, R., Hu, B.-G., Zheng, W.-S., Kong, X.W.: Robust Principal Component Analysis Based on Maximum Correntropy Criterion. IEEE Transactions on Image Processing 20(6), 1485–1494 (2011)

    Article  MathSciNet  Google Scholar 

  14. Yang, Q., Xue, D.-Y., Cui, J.-J.: Gait Recognition Using Sparse Representation. Journal of Northeastern University(Natural Science), 136–139 (2012)

    Google Scholar 

  15. Gong, M., Xu, Y., Yang, X., Zhang, W.: Gait Identification by Sparse Representation. FSKD 3, 1719–1723 (2011)

    Google Scholar 

  16. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and Robust Feature Selection via Joint l 2,1 − Norms Minimization. In: NIPS, vol. 23, pp. 1813–1821 (2010)

    Google Scholar 

  17. He, R., Sun, Z.N., Tan, T.N., Zheng, W.S.: Recovery of Corrupted Low-Rank Matrices via Half-Quadratic based Nonconvex Minimization. In: IEEE CVPR (2011)

    Google Scholar 

  18. He, R., Tan, T.N., Wang, L., Zheng, W.S.: L21 Regularized Correntropy for Robust Feature Selection. In: IEEE CVPR (2012)

    Google Scholar 

  19. Zheng, S., Huang, K.Q., Tan, T.N., He, R., Zhang, J.: Robust View Transformation Model for Gait Recognition. In: ICIP (2011)

    Google Scholar 

  20. Kusakunniran, W., Wu, Q., Li, H.D., He, R., Zhang, J.: Multiple Views Gait Recognition Using View Transformation Model Based on Optimized Gait Energy Image. In: IEEE ICCV (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yin, Q., Sun, R., Wang, L., He, R. (2012). Structure Sparsity for Multi-camera Gait Recognition. In: Liu, CL., Zhang, C., Wang, L. (eds) Pattern Recognition. CCPR 2012. Communications in Computer and Information Science, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33506-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33506-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33505-1

  • Online ISBN: 978-3-642-33506-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics