Abstract
In this paper, we develop a collaborative representation based projections (CRP) for face recognition, which is an unsupervised method. Like SPP and NPE, CRP aims to preserve the sparse reconstruction relations of data. CRP is much faster than SPP since CRP adopts collaborative representation with regularized least square related as objective function while SPP adopts sparse representation related as objective function. Experimental results on ORL and FERET demonstrate that CRP works well in feature extraction and leads to good recognition performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)
Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Ana1ysis and Machine Intel1igence 13(3), 252–264 (1991)
Swets, D.L., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(8), 831–836 (1996)
Belhumeur, V., Hespanha, J., Kriegman, D.: Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)
Yang, J., Yang, J.: Why can LDA be performed in PCA transformed space? Pattern Recognition 36(2), 563–566 (2003)
Hong, Z., Yang, J.: Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition 24(4), 317–324 (1991)
Friedman, J.H.: Regularized discriminant analysis. Journal of the American Statistical Association 84, 165–175 (1989)
Hastie, T., Tibshirani, R.: Penalized discriminant analysis. The Annals of Statistics 23, 73–102 (1995)
Chen, L.F., Liao, H.Y.M., Ko, M.T., Yu, G.J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition 33(1), 1713–1726 (2000)
Yu, H., Yang, J.: A direct LDA algorithm for high dimensional data–with application to face recognition. Pattern Recognition 34(10), 2067–2070 (2001)
Gao, Q., Zhang, L., Zhang, D.: Face recognition using FLDA with single training image per-person. Applied Mathematics and Computation 205(12), 726–734 (2008)
Zhuang, X., Dai, D.: Inverse fisher discriminant criteria for small sample size problem and its application to face recognition. Pattern Recognition 38(11), 2192–2194 (2005)
Jin, Z., Yang, J., Hu, Z., Lou, Z.: Face recognition based on the uncorrelated discrimination Transformation. Pattern Recognition 34(7), 1405–1416 (2001)
Yang, J., Liu, C.: Color Image Discrimiant Models and Algorithms for Face Recognition. IEEE Trans. Neural Networks 19(2), 2088–2098 (2008)
Loog, M.: Approximate Pairwise Accuracy Criterion for Multiclass Linear Dimension Reduction: Generalization of the Fisher Criterion. IEEE Trans. Pattern Analysis and Machine Intelligence 26(7), 762–766 (2001)
Lotlikar, R., Kothari, R.: Fractional-Step Dimensionality Reduction. IEEE Trans. Pattern Recognition and Machine Intelligence 22(6), 623–627 (2000)
Lu, J., Plataniotic, K.N., Venetsanopouls, A.N.: Face Recognition Using LDA-Based Algorithm. IEEE Trans. Neural Networks 14(1), 195–200 (2003)
Tao, D., Li, X., Wu, X., Maybank, S.J.: Geometric Mean for Subspace Selection. IEEE Trans. Pattern Analysis and Machine Intelligence 31(2), 260–274 (2009)
Xu, Y., Zhang, D., Yang, J., Yang, J.-Y.: A two-phase test sample sparse representation method for use with face recognition. IEEE Transactions on Circuits and Systems for Video Technology 21(9), 1255–1262 (2011)
Yang, W., Wang, J., Ren, M., Yang, J.: Feature extraction based on laplacian bidirectional maximum margin criterion. Pattern Recognition 42(11), 2327–2334 (2009)
Yang, W., Wang, J., Ren, M., Zhang, L., Yang, J.: Feature extraction using fuzzy inverse FDA. Neurocomputing 72(13-15), 3384–3390 (2009)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Roweis, S.T., Saul, L.K.: Nonlinear dimension reduction by locally linear embedding. Science 290, 2323–2326 (2000)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)
Xu, Y., Zhong, A., Yang, J., Zhang, D.: LPP solution schemes for use with face recognition. Pattern Recognition 43(12), 4165–4176 (2010)
He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In: ICCV, pp. 1208–1213 (2005)
Yang, J., Zhang, D., Yang, J., Niu, B.: Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence 29(4), 650–664 (2007)
Yan, S., Xu, D., Zhang, B., Zhang, H.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)
Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw patches. In: CVPR (2008)
Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace separation in the presence of outlying, incomplete, and corrupted trajectories. In: CVPR (2008)
Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM MMS 7(1), 214–241 (2008)
Wright, J., Yang, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)
Qiao, L.S., Chen, S.C., Tan, X.Y.: Sparsity preserving projections with applications to face recognition. Pattern Recognition 43(1), 331–341 (2010)
Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.: Learning with L1-graph for image analysis. IEEE Transactions on Image Processing 19(4), 858–866 (2010)
Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition. In: ICCV (2011)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Ana1ysis and Machine Intelligence 22(10), 1090–1104 (2000)
Phillips, P.J.: The facial recognition technology (FERET) database (2004), http://www.itl.nist.gov/iad/humanid/feret/feret_master.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, W., Sun, C., Liu, Q., Ricanek, K. (2012). Collaborative Representation Based Projections for Face Recognition. In: Liu, CL., Zhang, C., Wang, L. (eds) Pattern Recognition. CCPR 2012. Communications in Computer and Information Science, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33506-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-33506-8_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33505-1
Online ISBN: 978-3-642-33506-8
eBook Packages: Computer ScienceComputer Science (R0)