Skip to main content

Kernel L1 Graph for Image Analysis

  • Conference paper
Pattern Recognition (CCPR 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 321))

Included in the following conference series:

Abstract

Graph costructing plays an essential role in graph based learning algorithms. Recently, a new kind of graph called L1 graph which was motivated by that each datum can be represented as a sparse combination of the remaining data was proposed and showed its advantages over the conventional graphs. In this paper, the L1 graph was extended to kernel space. By solving a kernel sparse representation problem, the adjacency and the weights of the graph are simutaneously obtained. Kernel L1 graph preserved the advantages of L1 graph and can be more robust to noise and more data adaptive. Experiments on graph based learning tasks verified the supeririority of kernel L1 graph over the conventional K-NN graph, ε-ball graph, and the state-of-the-art L1 graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  2. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2002)

    Article  Google Scholar 

  4. Yan, S., Xu, D., Zhang, B.: Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE TPAMI 29(1), 40–51 (2007)

    Article  MathSciNet  Google Scholar 

  5. Cheng, B., Yang, J., Yan, S.: Learning With l 1-Graph for Image Analysis. IEEE TIP 19(4), 858–866 (2010)

    MathSciNet  Google Scholar 

  6. Gao, S., Tsang, I.W.-H., Chia, L.-T.: Kernel Sparse Representation for Image Classification and Face Recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Li, H., Gao, Y., Sun, J.: Fast kernel sparse representation. In: Int. Conf. Digital Image Computing: Tech. & Appl. (2011)

    Google Scholar 

  8. Luxburg, U.V.: A Tutorial on Spectral Clustering. Statistics and Computing (2007)

    Google Scholar 

  9. Wright, J., Ma, Y., Mairal, J., Sapiro, G.: Sparse Representation for Computer Vision and Pattern Recognition. Proc. of IEEE (2009)

    Google Scholar 

  10. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21 (October 2010), http://cvxr.com/cvx

  11. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Neural Information Processing Systems, pp. 801–808 (2006)

    Google Scholar 

  12. Song, L., Smola, A., Gretton, A., Borgwardt, K.M.: A dependence maximization view of clustering. In: Proc. of ICML, Corvallis, Oregon, USA, pp. 815–822 (2007)

    Google Scholar 

  13. Hull, J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  14. Tropp, J.A.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  15. Wang, M., Hua, X., Hong, R., et al.: Unified Video Annotation via Multigraph Learning. IEEE Trans. on Circuits and Systems for Video Technology 19(5), 733–746 (2009)

    Article  Google Scholar 

  16. Wang, M., Hua, X., Tang, J., et al.: Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation. IEEE Trans. on Multimedia 11(3), 465–476 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiao, L., Dai, B., Fang, Y., Wu, T. (2012). Kernel L1 Graph for Image Analysis. In: Liu, CL., Zhang, C., Wang, L. (eds) Pattern Recognition. CCPR 2012. Communications in Computer and Information Science, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33506-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33506-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33505-1

  • Online ISBN: 978-3-642-33506-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics