Skip to main content

Realistic Dynamic Posture Prediction of Humanoid Robot: Manual Lifting Task Simulation

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7506))

Included in the following conference series:

Abstract

A well known question mooted in biomechanics is how the central nerves system manages the body posture during various tasks. A 5DOF biomechatronical model of human body subjected to simulate the manual lifting task of humanoid robot. Simulation process is based on optimization approach named predictive dynamics using inverse dynamics. An objective function in term of ankle torques during lifting time, subjected to be minimized. It assumed that CNS considered this function to perform lifting motion balanced. In the other optimization-based simulations, balancing motion was guaranteed by a nonlinear inequality constraint which restricts the total moment arm of the links to an upper and lower boundary. In this method there is no need to use this constraint. Result shows that the motion is performed balanced. According to the comparison the results with the experimental data, the body posture of humanoid robots, predicted as similar as actual human posture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andriacchi, T.P., Mundermann, A., Smith, R.L., Alexander, E.J., Dyrby, C.O., Koo, S.: A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32(3), 447–457 (2004)

    Article  Google Scholar 

  2. Miyazakai, T., Wada, M., Kawahara, H., Sato, M., Baba, H., Shimada, S.: Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 61(7), 617–622 (2002)

    Article  Google Scholar 

  3. Demircan, E., Khatib, O., Wheeler, J., Delp, S.: Reconstruction and EMG-Informed Control, Simulation and Analysis of Human Movement for Athletics: Performance Improvement and Injury Prevention. In: Proc. IEEE International Conf. on Engineering in Medicine and Biology Society, Minneapolis, MN, pp. 6534–6537 (2009)

    Google Scholar 

  4. Li, G., Kaufman, K.R., Chao, E.Y., Rubash, H.E.: Prediction of antagonistic muscle forces using inverse dynamic optimization during flexion/extension of the knee. Journal of Biomech. Eng. 121(3), 316–322 (1999)

    Article  Google Scholar 

  5. Zeinali-Davarani, S., Hemami, H., Barin, K., Shirazi-Adl, A., Parnianpour, M.: Dynamic stability of spine using stability-based optimization and spindle reflex. Proc. IEEE Transaction on Neural System Rehabilitation Enginering 16(1), 106–118 (2008)

    Article  Google Scholar 

  6. Nussbaum, M.A., Chaffin, D.B.: Lumbar muscle force estimation using a subject-invariant 5-parameter EMG-based model. Journal of Biomechanics 31(7), 667–672 (1998)

    Article  Google Scholar 

  7. Wang, J., Li, Y., Zhao, Z.: Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm. International Journal of Advanced Robotic System 7(4), 1–12 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Park, K.C., Chang, P.H., Lee, S.: Analysis and control of redundant manipulator dynamics based on an extended operational space. Robotica 19(6), 649–662 (2001)

    Article  Google Scholar 

  9. Schafer, B., Krenn, R., Rebele, B.: On inverse kinematics and kinetics of redundant space manipulator simulation. Journal of Computational and Applied Mechanics 4(1), 53–70 (2003)

    Google Scholar 

  10. Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.: A unifying framework for robot control with redundant DOFs. Autonomous Robots 24(1), 1–12 (2007)

    Article  Google Scholar 

  11. Oh, Y., Chung, W., Youm, Y., Suh, I.H.: A Passive-based motion control of redundant manipulators using weighted decomposition of joint space. In: Proc. IEEE International Conference on Robotic and Automation, Monterey, CA, pp. 125–131 (1997)

    Google Scholar 

  12. Zhang, Y., Zhu, H., Tan, Z., Cai, B., Yang, Z.: Self-motion planning of redundant robot manipulators based on quadratic program and shown via PA10 example. In: Proc. IEEE 2nd International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, pp. 1–6 (2008)

    Google Scholar 

  13. Wang, J., Li, Y., Zhao, X.: Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm. International Journal of Advanced Robotic Systems 7(4), 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Sitoh, M.K., Chen, J.G., Long, K., Jung, H.S.: A graphical computer system for modeling the manual lifting task via biomechanical and psychophysical-biomechanical optimization approaches. Computers in Industry 21(2), 149–165 (1993)

    Article  Google Scholar 

  15. Chang, V.C., Brown, D.R., Bloswick, D.S., Hsiang, S.M.: Biomechanical Simulation of manual lifting using time space. Journal of Biomechanics 34(4), 527–532 (2001)

    Article  Google Scholar 

  16. Xiang, Y., Arora, J.S., Rahmatalla, S., Abdel-Malek, K.: Optimization-based dynamic human walking prediction: one step formulation. International Journal for Numerical Methods in Engineering 79(6), 667–695 (2009)

    Article  MATH  Google Scholar 

  17. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. Transaction of ASME Journal of Applied Mechanics 23, 215–221 (1955)

    MathSciNet  Google Scholar 

  18. Siciliano, B., Khatib, O.: Springer handbook of robotics. Springer (2008)

    Google Scholar 

  19. Khatib, O., Demircan, E., De Sapio, V., Sentic, L., Besier, T., Delp, S.: Robotic-based Syntesis of human motion. Journal of Physiology-ParisI (3-5), 211–219 (2009)

    Google Scholar 

  20. Khatib, O., Warren, J., De Sapio, V., Sentic, L.: Human-like motion from physiologically-based potential energy. On Advances in Robot Kinematics, 149–163 (2004)

    Google Scholar 

  21. Arisumi, H., Chardonnet, J.R., Kheddar, A., Yokoi, K.: Dynamic Lifting Motion of Humanoid Robots. In: IEEE International Conference on Robotics and Automation, Rome, Italy (2007)

    Google Scholar 

  22. Blajer, W., Dziewiecki, K., Mazur, Z.: Multibody modeling of human body for the inverse dynamics analysis of sagittal plane movements. Multibody Systems Dynamics 18(2), 217–232 (2007)

    Article  MATH  Google Scholar 

  23. Xiang, Y., Arora, J.S., Rahmatalla, S., Marler, T., Bhatt, R., Abdel-Malek, K.: Human lifting simulation using a multi-objective optimization approach. Multibody Dynamics 23(4), 431–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control, ch. 5. John Wiley and Sons, Inc. (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shoushtari, A.L., Abedi, P. (2012). Realistic Dynamic Posture Prediction of Humanoid Robot: Manual Lifting Task Simulation. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33509-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33509-9_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33508-2

  • Online ISBN: 978-3-642-33509-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics