Skip to main content

Spatial Normalization of Diffusion Tensor Images with Voxel-Wise Reconstruction of the Diffusion Gradient Direction

  • Conference paper
Multimodal Brain Image Analysis (MBIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7509))

Included in the following conference series:

Abstract

We propose a reconstructed diffusion gradient (RDG) method for spatial normalization of diffusion tensor imaging (DTI) data that warps the raw imaging data and then estimates the associated gradient direction for reconstruction of normalized DTI in the template space. The RDG method adopts the backward mapping strategy for DTI normalization, with a specially designed approach to reconstruct a specific gradient direction in combination with the local deformation force. The method provides a voxel-based strategy to make the gradient direction align with the raw diffusion weighted imaging (DWI) volumes, ensuring correct estimation of the tensors in the warped space and thereby retaining the orientation information of the underlying structure. Compared with the existing tensor reorientation methods, experiments using both simulated and human data demonstrated that the RDG method provided more accurate tensor information. Our method can properly estimate the gradient direction in the template space that has been changed due to image transformation, and subsequently use the warped imaging data to directly reconstruct the warped tensor field in the template space, achieving the same goal as directly warping the tensor image. Moreover, the RDG method also can be used to spatially normalize data using the Q-ball imaging (QBI) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66, 259–267 (1994)

    Article  Google Scholar 

  2. Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Transactions on Medical Imaging 20, 1131–1139 (2001)

    Article  Google Scholar 

  3. Yeo, B.T., Vercauteren, T., Fillard, P., Peyrat, J.M., Pennec, X., Golland, P., Ayache, N., Clatz, O.: DT-REFinD: diffusion tensor registration with exact finite-strain differential. IEEE Transactions on Medical Imaging 28, 1914–1928 (2009)

    Article  Google Scholar 

  4. Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Medical Image Analysis 10, 764–785 (2006)

    Article  Google Scholar 

  5. Xu, D., Hao, X., Bansal, R., Plessen, K.J., Peterson, B.S.: Seamless warping of diffusion tensor fields. IEEE Transactions on Medical Imaging 27, 285–299 (2008)

    Article  Google Scholar 

  6. Frank, L.R.: Anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 45, 935–939 (2001)

    Article  Google Scholar 

  7. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002)

    Article  Google Scholar 

  8. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)

    Article  Google Scholar 

  9. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56, 395–410 (2006)

    Article  Google Scholar 

  10. Ingalhalikar, M.A., Magnotta, V.A., Kim, J., Alexander, A.L.: A comparative study of diffusion tensor field transformations. In: Proc. SPIE Medical Imaging 2011, vol. 7259, pp. 72591Y–72591Y-8 (2009)

    Google Scholar 

  11. Ingalhalikar., M.A.: Spatial normalization of diffusion models and tensor analysis. vol. Ph.D. University of Iowa (2009)

    Google Scholar 

  12. Ashburner, J., Friston, K.J.: Nonlinear spatial normalization using basis functions. Hum. Brain. Mapp. 7, 254–266 (1999)

    Article  Google Scholar 

  13. Ashburner, J., Neelin, P., Collins, D.L., Evans, A., Friston, K.: Incorporating prior knowledge into image registration. NeuroImage 6, 344–352 (1997)

    Article  Google Scholar 

  14. Shen, D.G.: Image registration by local histogram matching. Pattern Recognition 40, 1161–1172 (2007)

    Article  MATH  Google Scholar 

  15. Shen, D.G., Davatzikos, C.: HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging 21, 1421–1439 (2002)

    Article  Google Scholar 

  16. Fletcher, R.: A modified Marquardt subroutine for nonlinear least squares. Harwell Report 6799 (1971)

    Google Scholar 

  17. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994)

    Article  Google Scholar 

  18. Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.H.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Transactions on Medical Imaging 23, 930–939 (2004)

    Article  Google Scholar 

  19. Christiansen, O., Lee, T.M., Lie, J., Sinha, U., Chan, T.F.: Total variation regularization of matrix-valued images. Int. J. Biomed. Imaging, 27432 (2007)

    Google Scholar 

  20. Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Techniques for spatial normalization of diffusion tensor images. In: Proc. SPIE Medical Imaging, vol. 3919, pp. 470–481 (2000)

    Google Scholar 

  21. Basser, P.J., Pajevic, S.: Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise. Magn. Reson. Med. 44, 41–50 (2000)

    Article  Google Scholar 

  22. Hult, J.: A fourth-order Runge-Kutta in the interaction picture method for, simulating supercontinuum generation in optical fibers. Journal of Lightwave Technology 25, 3770–3775 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, W. et al. (2012). Spatial Normalization of Diffusion Tensor Images with Voxel-Wise Reconstruction of the Diffusion Gradient Direction. In: Yap, PT., Liu, T., Shen, D., Westin, CF., Shen, L. (eds) Multimodal Brain Image Analysis. MBIA 2012. Lecture Notes in Computer Science, vol 7509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33530-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33530-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33529-7

  • Online ISBN: 978-3-642-33530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics