Skip to main content

How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size

  • Conference paper
Multimodal Brain Image Analysis (MBIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7509))

Included in the following conference series:

Abstract

This paper proposes a novel formulation to model and analyze the statistical characteristics of some types of segmentation problems that are based on combining label maps / templates / atlases. Such segmentation-by-example approaches are quite powerful on their own for several clinical applications and they provide prior information, through spatial context, when combined with intensity-based segmentation methods. The proposed formulation models a class of multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of images. The paper presents a systematic analysis of the nonparametric estimation’s convergence behavior (i.e. characterizing segmentation error as a function of the size of the multiatlas database) and shows that it has a specific analytic form involving several parameters that are fundamental to the specific segmentation problem (i.e. chosen anatomical structure, imaging modality, registration method, label-fusion algorithm, etc.). We describe how to estimate these parameters and show that several brain anatomical structures exhibit the trends determined analytically. The proposed framework also provides per-voxel confidence measures for the segmentation. We show that the segmentation error for large database sizes can be predicted using small-sized databases. Thus, small databases can be exploited to predict the database sizes required (“how many templates”) to achieve “good” segmentations having errors lower than a specified tolerance. Such cost-benefit analysis is crucial for designing and deploying multiatlas segmentation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 46(3), 726–738 (2009)

    Article  Google Scholar 

  2. Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de-Solorzano, C.: Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans. Med. Imaging 28(8), 1266–1277 (2009)

    Article  Google Scholar 

  3. Carter, K., Raich, R., Hero, A.: On local intrinsic dimension estimation and its applications. IEEE Trans. Signal Proc. 58(2), 650–663 (2010)

    Article  MathSciNet  Google Scholar 

  4. Commonwick, O., Warfield, S.: Estimation of inferential uncertainty in assessing expert segmentation performance from STAPLE. IEEE Trans. Med. Imag. 29(3), 771–780 (2010)

    Article  Google Scholar 

  5. Depa, M., Sabuncu, M.R., Holmvang, G., Nezafat, R., Schmidt, E.J., Golland, P.: Robust atlas-based segmentation of highly variable anatomy: Left atrium segmentation. In: MICCAI Workshop Stat. Atlases Comp. Models Heart, pp. 1–8 (2010)

    Google Scholar 

  6. Felsberg, M., Kalkan, S., Krueger, N.: Continuous dimensionality characterization of image structures. Image and Vision Computing 27(6), 628–636 (2009)

    Article  Google Scholar 

  7. Ha, L., Kruger, J., Fletcher, T., Joshi, S., Silva, C.: Fast parallel unbiased diffeomorphic atlas construction on multi-graphics processing units. In: Euro. Symp. Parallel Graph. Vis., pp. 65–72 (2009)

    Google Scholar 

  8. Hardle, W.: Applied Nonparametric Regression. Cambridge Univ. Press (1990)

    Google Scholar 

  9. Hein, M., Audibert, J.Y.: Intrinsic dimensionality estimation of submanifolds. In: Rd. In: Int. Conf. Mach. Learn., pp. 289–296 (2005)

    Google Scholar 

  10. Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., Ginneken, B.: Multi-atlas-based segmentation with local decision fusion - application to cardiac and aortic segmentation in CT scans. IEEE Trans. Med. Imag. 28(7), 1000–1010 (2009)

    Article  Google Scholar 

  11. Lotjonen, J., Wolz, R., Koikkalainen, J., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: ADNI: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3), 2352–2365 (2010)

    Article  Google Scholar 

  12. Mack, Y.P.: Local properties of k-NN regression estimates. SIAM J. Alg. Disc. Meth. 2(3), 311–323 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sabuncu, M., Yeo, B., van Leemput, K., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE Trans. Med. Imaging 29(10), 1714–1729 (2010)

    Article  Google Scholar 

  14. Takezawa, K.: Introduction to Nonparametric Regression. Wiley (2005)

    Google Scholar 

  15. Wang, H., Suh, J.W., Das, S., Pluta, J., Altinay, M., Yushkevich, P.: Regression-based label fusion for multi-atlas segmentation. IEEE Conf. Comp. Vis. Pattern Recog. 1, 1113–1120 (2011)

    Google Scholar 

  16. Wang, H., Suh, J.W., Pluta, J., Altinay, M., Yushkevich, P.: Optimal weights for multi-atlas label fusion. In: Int. Conf. Info. Proc. Med. Imag., pp. 73–84 (2011)

    Google Scholar 

  17. Warfield, S., Zou, K., Wells, W.: Validation of image segmentation by estimating rater bias and variance. Phil. Trans. Roy. Soc. 366(1874), 2361–2375 (2008)

    Article  Google Scholar 

  18. Zhu, P., Awate, S.P., Gerber, S., Whitaker, R.: Fast Shape-Based Nearest-Neighbor Search for Brain MRIs Using Hierarchical Feature Matching. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 484–491. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Awate, S.P., Zhu, P., Whitaker, R.T. (2012). How Many Templates Does It Take for a Good Segmentation?: Error Analysis in Multiatlas Segmentation as a Function of Database Size. In: Yap, PT., Liu, T., Shen, D., Westin, CF., Shen, L. (eds) Multimodal Brain Image Analysis. MBIA 2012. Lecture Notes in Computer Science, vol 7509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33530-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33530-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33529-7

  • Online ISBN: 978-3-642-33530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics