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Abstract
This paper proposes a novel formulation to model and analyze the statistical characteristics of
some types of segmentation problems that are based on combining label maps / templates / atlases.
Such segmentation-by-example approaches are quite powerful on their own for several clinical
applications and they provide prior information, through spatial context, when combined with
intensity-based segmentation methods. The proposed formulation models a class of multiatlas
segmentation problems as nonparametric regression problems in the high-dimensional space of
images. The paper presents a systematic analysis of the nonparametric estimation’s convergence
behavior (i.e. characterizing segmentation error as a function of the size of the multiatlas
database) and shows that it has a specific analytic form involving several parameters that are
fundamental to the specific segmentation problem (i.e. chosen anatomical structure, imaging
modality, registration method, label-fusion algorithm, etc.). We describe how to estimate these
parameters and show that several brain anatomical structures exhibit the trends determined
analytically. The proposed framework also provides per-voxel confidence measures for the
segmentation. We show that the segmentation error for large database sizes can be predicted using
small-sized databases. Thus, small databases can be exploited to predict the database sizes
required (“how many templates”) to achieve “good” segmentations having errors lower than a
specified tolerance. Such cost-benefit analysis is crucial for designing and deploying multiatlas
segmentation systems.

1 Introduction and Background
The strategy of segmenting an image using other examples of similar segmentations has lead
to various approaches in a spectrum of clinical applications over the last two decades. This
paper considers segmentation methods, e.g. [1,5,11], using a combination of (i) a set of
template images that depict the anatomy and (ii) a set of tissue probability maps or
segmentations that give, for each template, the true probability of each voxel belonging to a
specific anatomical structure. A pair comprising a template image and its true segmentation
is termed an atlas. For segmenting structures in biomedical images where boundary parts of
the anatomy are not readily apparent in the image data, atlases can infuse crucial prior
information, strongly influenced by anatomical context, and thereby complement solely-
data-driven segmentation methods.

For segmenting anatomical structures having weakly-visible boundaries, atlas-based
methods leverage information within the spatial configuration of those surrounding
structures whose boundaries are well defined in the image. This relies on the assumption
that the geometry (i.e. location, pose, size, and shape) of the weakly-visible structure is a
function of the geometry of these surrounding structures. Subsequently, atlas-based
segmentation methods register pre-segmented template images to match the target image
containing the structure we want to segment. Assuming reliable matching of the surrounding
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structures, registration methods yield a deformation to best match the weakly-visible
structure of interest. Subsequently, template segmentations are deformed to the target.

Large collections of medical images, and associated expert-defined segmentations, are
becoming ubiquitous as public resources, and within specific clinical practices. This has lead
to multiatlas, nonparametric atlas, or label-fusion approaches [1,2,5,10,11,13,15,16] to
segmentation that leverage information in the entire database of atlases. Multiatlas
approaches can exploit methods for fast selection [18] of a small subset of templates that are
most similar to the target. They independently register the selected templates to the target
and, then, deform database segmentations to the target space. A weighted average [1] of the
deformed segmentations produces a nonparametric estimate of the segmentation of the
target. Instead of using the entire database, the carefully selected subset produces better
estimates, as shown for brain [1] and cardiac [5] images. The proposed theoretical
framework and the results shed light on this behavior, indicating that an optimal subset size
depends on the database size.

The spirit of the proposed framework differs significantly from that of methods focussing on
estimating rater-performance parameters (particularly, rater bias) [17] and the parameters’
confidence intervals [4] or compensating for inter-voxel label correlations [15]. Unlike such
methods, the proposed approach models and predicts segmentation error as a function of
database size and provides per-voxel confidence measures on the segmentation.

This paper makes many contributions. It proposes a novel statistical non-parametric
regression framework to model a class of multiatlas segmentation approaches and analyze
the convergence behavior of segmentation error with respect to database size. It shows that
the error convergence rate as a function of database size has an analytic form with
parameters fundamental to the segmentation problem. By measuring these parameters, it
characterizes multiatlas segmentation problems (i.e. chosen anatomical structure, imaging
modality, etc.) and a class of approaches (i.e. registration algorithm, label-fusion algorithm,
etc.) in terms of (i) the complexity of the function mapping the geometry of (clearly-visible)
surrounding structures to the geometry of the structure of interest, (ii) the inherent
anatomical randomness in the structure’s geometry, (iii) number of atlases available in the
database, and (iv) some algorithm parameters. In this way, the framework offers new
methods to evaluate the efficacy of a particular database of atlases, modality, algorithm, etc.
It can provide per-voxel confidence measures for segmentations. We demonstrate that the
segmentation error for large database sizes can be predicted using small-sized databases.
Thus, small databases can be exploited to predict the database sizes required (“how many
templates”) to achieve “good” segmentations having errors lower than a specified tolerance.
Such cost-benefit analysis is crucial for designing and deploying multiatlas segmentation
systems.

2 Methods
This section presents a novel statistical framework, relying on nonparametric regression, to
model and analyze a class of multiatlas segmentation approaches.

Consider the problem of estimating the unknown segmentation for a target image, using a
database of atlases (templates and their segmentations). Treating each atlas as a member of a
family of atlases under constrained diffeomorphisms (e.g. constrained under limited
deformation norm), we first transform the database to factor out a diffeomorphism between
the geometrical configurations of anatomical structures within the target and each template;
better matches of the two geometries would usually lead to better matches of the
segmentations. We assume that multiatlas segmentation methods can compute an optimal
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smooth diffeomorphism using image registration on the raw intensities or on derived
geometry-capturing features and, later, deform each template and segmentation, in the
database, to the target-image physical space. Thus, we propose to (i) model multiatlas
segmentation as a regression problem where the independent variable represents the
deformed template images and the dependent variable represents the deformed segmentation
images and (ii) analyze the rate of convergence of the error in multiatlas segmentation with
respect to increasing database sizes to characterize the diffculty for a specific segmentation
problem.

2.1 Statistical Modeling and Analysis of Multiatlas Segmentation
Consider a vector random variable F that models a (deformed) biomedical image with V
voxels. Observed images f ∈ ℝV are drawn from the probability density function (PDF) P
(F). For a specific anatomical structure in the image, let S be a V -dimensional vector
random variable modeling the (deformed) true probabilistic-segmentation image.
Segmentations s are drawn from P (S). Let S[v] denote the random variable at the v-th
component of S (i.e. voxel v in image); ∀s∀v, s[v] ∈ [0, 1]. Assume that the joint random
variable (F, S) has a PDF P (F, S) capturing dependencies between images f and
segmentations s.

Consider a database aM ≜ {(fm, sm)}m=1,…,M of M atlases, i.e. template images {fm}m=1,…,M
paired with their true segmentations {sm}m=1,…,M, where each observed image pair (fm, sm)
is drawn independently from the PDF P (F, S). For a given target image f0 whose true
segmentation s0 is unknown, we get an estimate ŝ0 of the true segmentation, using database
aM.

We treat the multiatlas segmentation problem as that of statistical non-parametric regression
[8,14]. Let r(F) be a regression function of S (dependent variable) on F (independent
variable). We choose r(F) as the regression function that minimizes the mean squared error
(MSE) risk function EP(F,S) [||S − r(F)||2] = EP(F)[EP(S|F)[||S − r(F)||2]. For any target f, the
MSE-minimizing regression function is the conditional expectation r(f) ≜ EP(S|f)[S]. Let r̂(F,
aM) be an estimator of r(F).

We want to characterize the behavior of conditional-expectation regression estimators over
(i) varying images f ~ P (F) and (ii) varying databases aM comprising M image pairs. Hence,
we treat the database as a random variable , assume a joint PDF P (F, S, ), and then
define a new MSE function:

(1)

(2)

The second term in the MSE(M, f) expression leads to EP(F)EP( |F)[||r(F) − r̂(F, )||2],
which is the mean integrated squared error associated with regression estimators [14]. We
consider P( |F) = P ( ).

Let r(f)[v] denote the v-th component of r(f) and let r̂ (f, )[v] denote the v-th component of
r̂(f, ). Then, the linearity of expectation gives:
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(3)

(4)

We now analyze all three terms in the expression for MSE(M, f)[v]:

1. For the conditional-expectation regression function r(f), the first term is the
variance of the conditional PDF P (S[v]|f). This term (i) depends on the inherent
(beyond human control) randomness in the segmentation, at voxel v, given image
data f and (ii) is independent of the estimator r̂(f, ).

2. The second term relates to the quality of approximation of the estimator r̂(f, ) to
the true conditional-expectation regression function r(f). This term depends on the
database size M and the characteristics of the marginal distribution P (F) and the
regression function r(·) in the locality of f [8]. This term equals the sum of the
squared bias and variance of the estimator.

3. The third term vanishes because it is equal to EP ( )EP(S| ,f)[2(S[v] − r(f)[v])
(r(f)[v] − r̂ (f, )[v])] where the inner expectation is zero (decomposition of
random variable S[v] − r̂(F, )[v]).

Thus, MSE(M, f)[v] is the sum of the variance of the conditional PDF, the squared bias of
the estimator, and the variance of the estimator:

(5)

We now choose a specific regression estimator. A consistent estimator for the conditional-
expectation regression function r(f) is the generalized k-nearest-neighbor (kNN) estimator
[12] r̂(f, aM):

(6)

where g(·, ·) is some distance metric in the space of f, Rk is the distance between f and its k-
th nearest neighbor in the set {fm}m=1,…,M, and w(·) : ℝ ↦ ℝ is a bounded non-negative
generalized weight function satisfying ∫ w(u)du = 1 and w(u) = 0 for ||u||> 1. In this paper,
w(u) is constant ∀u : ||u|| ≤ 1.

For the class of generalized kNN estimators [12],

(7)

(8)
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where (i) D is the dimension of the independent variable; (ii) φ(r(·)[v], P(F), f, D) depends
on the values and differential properties of the PDF P (F) in the locality of the fixed image f,
the local differential properties of the v-th component of the true regression function r(·),
and dimension D; (iii) ψ(w(·), D) depends on the chosen weight function w(·) and the
dimension D. Indeed, the kNN estimator converges to the true conditional-expectation
regression function asymptotically as the database size M → ∞ and the number of nearest
neighbors k → ∞ at an appropriate rate such that (k/M) → 0.

It is important to note that the rate of convergence of the bias and variance depends on (i)
the dimensionality D associated with the independent random variable F, (ii) the values and
the differential properties of the PDF P (F) of images, and (iii) the differential properties of
the regression function r(f).

2.2 Practical Interpretation Using the Statistical Analysis
This section leverages the theory described in Section 2.1 to get practically useful measures
of the difficulty of multiatlas segmentation for a specific segmentation problem. It describes
how to empirically characterize the typical behavior of the regression-based segmentation
scheme for an anatomical structure of interest.

Empirically Computing MSE—For a chosen k and database size M, we propose to
empirically compute MSE(M) in Equation 1 by: (i) Monte-Carlo sampling of target images f
to compute EP(F)[·], (ii) for each f, Monte-Carlo sampling of databases aM, from a large
database with size N > M, to compute EP( |f)[·], and (iii) computing the MSE terms at
each voxel v and summing them over all voxels. We repeat this process for a range of M
values.

Parametric Form for MSE—When the class of signals F is unconstrained, D equals the
number of image voxels, which is typically very large. However, consistent with empirical
evidence in the signal-processing literature that the intrinsic dimension [9] of real-world
multivariate data is far less than the number of variables, we consider D as the intrinsic
dimension of the independent variable (template images) and estimate it empirically. Note
that each voxel v can have a different value for the intrinsic dimension Dv.

Tracing our way back, we (i) substitute Equations (7) and (8) for voxelwise regression
estimator’s bias and variance, respectively, into Equation (5), (ii) substitute that into
Equation (3), and (iii) substitute the resulting equation into Equation (1). This gives the
following parametric forms for the MSEs:

(9)

(10)

These equations captures the characteristics of a specific segmentation problem and
approach through parameters α, δ, β, D, whose significance we describe next:
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1. α denotes the intrinsic randomness in the segmentations s as a function of the
image data f. α is independent of the regression estimator and hence is the lowest
possible achievable MSE.

δ closely relates to α and captures the lowest possible MSEs for the chosen
generalized-kNN estimator (i.e. w(·)) and k, which is achieved when the database
size M → ∞. As M → ∞, we make the kNN estimator converge to the true
conditional expectation, by letting k go to ∞ at such a rate so that (k/M) → 0; in
that case, δ → α.

Assuming that f lies in a Euclidean space, at each voxel, ψ(w(·), Dv) = c(Dv) ∫ w2

(u)du, where c(Dv) is the volume of the unit sphere in Dv dimensions [12]. For the
chosen kNN scheme with constant w(·) within the unit sphere, ψ(w(·), Dv) = 1, αv =
γv = δv/(1 + 1/k), and α = γ = δ/(1 + 1/k).

2. β represents the overall complexity of multiatlas segmentation in terms of the (i)
differential properties of the true regression function r(f) and (ii) values and
differential properties of the image PDF P (F). For example, r(·) is harder to
estimate when β is increased when: (i) larger gradients and curvatures in r(·) lead to
larger values of φ; (ii) around a target f0, low values of P (F) make it harder to
obtain databases comprising sufficiently-many templates near f0; (iii) around a
target f0, locally-varying P (F) leads to databases where the templates near f0 pull
the segmentation estimate towards that for the local higher-probability templates.

3. D in the exponent represents the overall intrinsic dimension associated with the
entire anatomical structure. Larger D increases the difficulty of multiat-las
segmentation by requiring estimation of a higher-dimensional regressor.

Parameter Estimation (α, β, δ, D)—To estimate parameters δ, β, D (for a specific
segmentation problem and approach) we (i) empirically evaluate MSE(Mj) for a range of
database sizes Mj (e.g. M1 = 10, Mj+1 = Mj + 10) and then (ii) solve a weighted nonlinear
least-squares curve-fitting problem

(11)

where weights Wj are the computed variances of the squared errors for each Mj.
Interestingly, effects of changing k are absorbed by changes in δ and β, leaving D
unchanged. As described before, for chosen kNN estimator, α = δ/(1 + 1/k). Parameter
estimates for any voxel v are obtained by curve fitting to MSE(Mj)[v].

3 Experiments and Results on a Clinical Database

This section describes some practical considerations and shows results on a large clinical
database. The results demonstrate the validity of the proposed model for multiatlas
segmentation and the utility of the proposed analysis in clinical applications. Section 3.1
shows that several anatomical structures in the brain exhibit the parametric trends
determined by the model, which in turn shows that the model is well-suited for real
applications. Section 3.2 shows that the segmentation error for large database sizes can be
predicted using small-sized databases. Thus, small databases can be exploited to predict the
database sizes required to achieve a specified maximum tolerable MSE in segmentation.
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Practical Considerations—The proposed formulation is based on the independent
variable being the deformed templates in the entire database. However, multiatlas
approaches require only a few most-similar templates (k in kNN) and registration between
the target and thousands of templates in a large database can be very expensive. Thus, this
paper uses an extremely-fast approximate search for similar templates relying on affine
registration followed by spatial pyramid matching on coded geometry-capturing features
(canny edges clustered and coded based on orientation and curvature) [18]. This implicitly
induces a distance metric in the space of deformed images f, underlying kNN regression.
The fast lookup makes multiatlas schemes viable for large databases. Next, we compute the
optimal deformations, between each selected template and the target, using constrained
diffeomorphic registration using [7].

Clinical Database—We evaluate the proposed methods on a large clinical database
obtained from the National Alliance for Medical Image Computing (www.na-mic.org)
comprising 186 T1 MR brain images (dimensions ≈ 256×256×240; voxel size ≈13mm3)
with expert segmentations for the caudate, putamen, thalamus, hippocampus, and globus
pallidus in both hemispheres.

3.1 Error Convergence in Multiatlas Segmentation in Brain MRI
We selected 20 random target images f. For each f, we performed 50 random Monte-Carlo
simulations of databases aM, ∀M. We chose k = 10. Figure 1(a) shows MSE values (divided
by the average size of the structure in the database), and fitted curves, for various database
sizes. Corresponding structures in the left and right brain hemisphere structures are
combined.

The size-normalized MSE values relate to Dice, both measuring degree of (dis)similarity
relative to size. While the Dice measure takes values in [0, 1], size-normalized MSE takes
values in [0, η] where η is twice the ratio of (i) the size of the largest structure in the
database to (ii) the average size of the structure in the database. For example, for thalamus
segmentation, using the largest database M = 186, averaged over 20 target images, Dice =
0.91 and MSE = 0.11.

Table 1 shows the parameters underlying the fitted curves. Values for δ (inherent
randomness) indicate the lowest possible MSE achievable with k = 10 and the chosen
generalized-kNN estimator. Values for β (regression complexity) and D (intrinsic
dimension) indicate (i) the size of databases needed to achieve small MSEs, e.g. MSE closer
to δ, and (ii) the amount of benefit, in terms of a decrease in MSE, obtained for the cost of an
increase in database size. Such cost-benefit analyses are crucial for designing clinical
support systems. Interestingly, the range of our estimates for D, for probabilistic
segmentations, is similar to that found for fuzzy digit images [9] and texture [3,6].

The globus pallidus has probably the weakest boundaries and is the most difficult to
segment (for its very small size) leading to the highest values for MSE, δ, β, D. The
hippocampus is the second most difficult to segment probably because of its elongated thin
shape and small size. The thalamus gives the lowest MSEs probably due to its large size,
despite the part of its boundary next to the gray matter being quite weak.

Figure 1(b) shows MSEs and fitted curves for the caudate (as an example) for varied k.
Consistent with the theory of kNN-estimator convergence (Section 2), large k leads to lower
MSE for large database sizes M, but can increase MSE for lower M. Indeed, for the kNN
estimator to converge asymptotically to the true conditional expectation, as M increases, k
must increase at an appropriate rate [8]. Thus, Figure 1(b) is consistent with the regression
theory in the sense that the MSE-minimizing k does depend on the database size M.
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Figure 2 shows a hippocampus and parameter values associated with curves fitted to MSE
values obtained at each voxel, i.e. without the summation Σv(·) for δ, β in Equation 10. Zero
values for MSE and δ for voxels well inside or well outside the hippocampus indicate the
ease of segmentation for such voxels. Voxels where the segmentation is the most difficult
(highest β, D; high δ) lie near the hippocampus head (near the amygdala; very low contrast)
and the tail (perhaps larger shape variability leads to inaccurate registration). As described in
Section 2.2, for the chosen kNN estimator and k = 10, α = δ/(1+1/k) = δ/1.1.

3.2 Predicting Error Convergence Using Small Databases of Atlases
Figure 3 shows the results of experiments where we first randomly picked 40 atlases from
the brain database, then computed MSE values for Mj = 10, 20, 30, 40 using the 40-atlas
database, and finally fitted the parametric curves for these 4 values of Mj. We then compare
these fitted curves to the fitted curves in Figure 1 that were obtained using the full-sized
database. Figure 3 shows that the curves using small-sized databases predict the MSEs at
large database sizes quite well.

Table 2 shows the mean and standard deviation of the parameters estimated using random
40-sized databases for brain MR images. It shows that these parameter estimates, using 40-
sized databases, are very close to the parameters estimated using the full 186-sized database
in Table 1.

Figure 3 and Table 2 show that the error-convergence curves as well as the underlying
parameters predicted using small-sized databases are a good approximation to those
observed using much larger databases. Thus, small databases, which require fewer expert
segmentations and lesser time and effort to construct, can be exploited to predict the much-
larger database sizes required to achieve a specified maximum tolerable error in
segmentation. Such cost-benefit analysis is crucial for designing and deploying multiatlas
segmentation systems, potentially comprising a few thousand atlases.

4 Discussion and Conclusions
This paper presents a new statistical modeling and analysis framework for measuring the
difficulty of multiatlas segmentation (for a specific anatomical structure, imaging modality,
registration method, label-fusion strategy, etc.) in terms of the convergence behavior of
segmentation error as a function of database size. It captures these properties using
parameters fundamental to the underlying nonparametric regression and extends the analysis
to give per-voxel estimates. It shows results using a large clinical database. Furthermore, it
shows that small databases, requiring expert segmentations of only a small number of
atlases, can be exploited to make valid predictions of the (much-larger) database sizes
required to achieve a specified maximum tolerable error in segmentation.

Future work will deal with empirically determining how small can atlas databases be before
they start losing their power of predicting MSE convergence for much larger database sizes.
Some preliminary evidence indicates that the prediction needs significantly fewer atlases
(perhaps just 15 or 20) than those used in this paper. Another interesting aspect unexplored
in this paper is the applicability of the proposed framework to anatomical structures outside
the brain where our initial experiments are quite promising.

The experiments in this paper use simple averaging for label fusion even though the
proposed theoretical framework relies on generalized-kNN regression and thus allows for
generalized weighting schemes. Some recent approaches to label fusion have found that
generalized weighting schemes can perform better [16]. In the future, the proposed
framework can be exploited to analyze approaches with sophisticated weighting schemes.
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Recent works [2,10,13] in multiatlas segmentation have found improvements in
performance by using local averaging approaches where the tissue probability at a voxel is
determined by using only that information in the (registered) atlases which lies within the
locality of that voxel. The proposed framework can be extended to model local label fusion
by modeling a separate regression problem at each voxel in the image, i.e. the set of k
nearest neighbors can be different at each voxel and will be determined by local similarities
between the target and the templates, instead of global similarities proposed in this paper.
Indeed, this is an important part of future work. Nevertheless, this paper makes significant
contributions by establishing a brand new principled theoretical framework for modeling
and analysis. Furthermore, this paper shows how the proposed framework coupled with a
small set of atlases (requiring few expert segmentations) can be utilized to predict the much-
larger database sizes (“cost”) required to achieve a specified maximum tolerable error
(“benefit”) in segmentation. Such “cost-benefit” analysis is crucial for designing and
deploying multiatlas segmentation systems comprising, potentially, several hundreds or
thousands of atlases.
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Fig. 1. MSE Convergence for Subcortical Structures in Brain MR images
(a) The dots and the error bars show MSE(Mj) and the standard deviation, respectively,
(divided by the average true size of structures in database) for k = 10. The parametric fitted
curves are shown by solid lines. Table 1 gives the parameter values. (b) shows MSEs and
fitted curves for the caudate (as an example) for varied k.

Awate et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 February 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Parameter values per voxel for multiatlas hippocampus segmentation from T1 MR images.
(a) MR image, sagittal slice with voxels {v}. (b) δv = inherent randomness. (c) βv =
complexity of regression function. (d) Dv = intrinsic dimension.
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Fig. 3. Predicting MSE for Large Database Sizes using Small Databases
MSEs (dot = mean value; error bar = standard deviation) and fitted curves (dashed lines;
error bars = standard deviation on the fitted curve) using small databases (40 atlases)
compared with the fitted curves (solid lines) using large databases in Figure 1.
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