Abstract
Lazy Clause Generation is a powerful approach to reducing search in Constraint Programming. This is achieved by recording sets of domain restrictions that previously led to failure as new clausal propagators called nogoods. This dramatically reduces the search and provides orders of magnitude speedups on a wide range of problems. Current implementations of Lazy Clause Generation only allows solvers to learn and utilize nogoods within an individual problem. This means that everything the solver learns will be forgotten as soon as the current problem is finished. In this paper, we show how Lazy Clause Generation can be extended so that nogoods learned from one problem can be retained and used to significantly speed up the solution of other, similar problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
AbÃo, I., Deters, M., Nieuwenhuis, R., Stuckey, P.J.: Reducing Chaos in SAT-Like Search: Finding Solutions Close to a Given One. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 273–286. Springer, Heidelberg (2011)
Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices: CP and IP Approaches. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 1–15. Springer, Heidelberg (2007)
Chu, G.: Interproblem nogood instances, www.cis.unimelb.edu.au/~pjs/interprob/
Chu, G., Stuckey, P.J.: Minimizing the Maximum Number of Open Stacks by Customer Search. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 242–257. Springer, Heidelberg (2009)
Feydy, T., Stuckey, P.J.: Lazy Clause Generation Reengineered. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)
Langley, P.: Learning effective search heuristics. In: IJCAI, pp. 419–421 (1983)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proceedings of the 38th Design Automation Conference, pp. 530–535. ACM (2001)
Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = Lazy Clause Generation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg (2007)
Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why Cumulative Decomposition Is Not as Bad as It Sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 746–761. Springer, Heidelberg (2009)
Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 16(3), 250–282 (2011)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm selection for sat. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chu, G., Stuckey, P.J. (2012). Inter-instance Nogood Learning in Constraint Programming. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-33558-7_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33557-0
Online ISBN: 978-3-642-33558-7
eBook Packages: Computer ScienceComputer Science (R0)