Abstract
We present an exact solution approach to the constrained shortest path problem with a super additive objective function. This problem generalizes the resource constrained shortest path problem by considering a cost function c(·) such that, given two consecutive paths P1 and P2, c(P1 ∪ P2) ≥ c(P1) + c(P2). Since super additivity invalidates the Bellman optimality conditions, known resource constrained shortest path algorithms must be revisited. Our exact solution algorithm is based on a two stage approach: first, the size of the input graph is reduced as much as possible using resource, cost, and Lagrangian reduced-cost filtering algorithms that account for the super additive cost function. Then, since the Lagrangian relaxation provides a tight lower bound, the optimal solution is computed using a near-shortest path enumerative algorithm that exploits the lower bound. The behavior of the different filtering procedures are compared, in terms of computation time, reduction of the input graph, and solution quality, considering two classes of graphs deriving from real applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aneja, Y.P., Aggarwal, V., Nair, K.P.K.: Shortest chain subject to side constraints. Networks 13(2), 295–302 (1983)
Applegate, D., Cook, W., Dash, S., Mevenkamp, M.: QSopt linear programming solver, http://www.isye.gatech.edu/~wcook/qsopt/ (last visited, April 2012)
Beasley, J.E., Christofides, N.: An algorithm for the resource constrained shortest path problem. Networks 19(4), 379–394 (1989)
Carlyle, W.M., Royset, J.O., Wood, R.K.: Lagrangian relaxation and enumeration for solving constrained shortest-path problems. Networks 52(4), 256–270 (2008)
Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problema. Networks 42(3), 135–153 (2003)
Gabriel, S.A., Bernstein, D.: Nonadditive shortest paths: subproblems in multi-agent competitive network models. Computational & Mathematical Organization Theory 6(1), 29–45 (2000)
Gellermann, T., Sellmann, M., Wright, R.: Shorter Path Constraints for the Resource Constrained Shortest Path Problem. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 201–216. Springer, Heidelberg (2005)
Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Networks 10(4), 293–309 (1980)
Irnich, S., Desaulniers, G.: Shortest Path Problems with Resource Constraints. In: Desaulniers, G., Desrosiers, J., Solomon, M. (eds.) Column Generation, pp. 33–65. Springer (2005)
Jepsen, M.K., Petersen, B., Spoorendonk, S.: A branch-and-cut algorithm for the elementary shortest path problem with a capacity constraint. Technical Report 08/01, Dept. of Computer Science. University of Copenhagen, Copenhagen (2008)
Kuipers, F., Korkmaz, T., Krunz, M., Van Mieghem, P.: Performance evaluation of constraint-based path selection algorithms. IEEE Network 18(5), 16–23 (2004)
Kuipers, F., Van Mieghem, P., Korkmaz, T., Krunz, M.: An overview of constraint-based path selection algorithms for qos routing. IEEE Communications Magazine 40(12), 50–55 (2002)
Lefebvre, M.P., Puget, J.-F., Vilím, P.: Route Finder: Efficiently Finding k Shortest Paths Using Constraint Programming. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 42–53. Springer, Heidelberg (2011)
Matthew Carlyle, W., Kevin Wood, R.: Near-shortest and k-shortest simple paths. Networks 46(2), 98–109 (2005)
Mehlhorn, K., Ziegelmann, M.: Resource Constrained Shortest Paths. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 326–337. Springer, Heidelberg (2000)
Muhandiramge, R., Boland, N.: Simultaneous solution of lagrangean dual problems interleaved with preprocessing for the weight constrained shortest path problem. Networks 53(4), 358–381 (2009)
Pham, Q.D., Deville, Y., Van Hentenryck, P.: Constraint-Based Local Search for Constrained Optimum Paths Problems. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 267–281. Springer, Heidelberg (2010)
Quesada, L., Van Roy, P., Deville, Y., Collet, R.: Using Dominators for Solving Constrained Path Problems. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 73–87. Springer, Heidelberg (2006)
Reinhardt, L.B., Pisinger, D.: Multi-objective and multi-constrained non-additive shortest path problems. Computers & Operations Research 38(3), 605–616 (2011)
Sellmann, M.: Reduction Techniques in Constraint Programming and Combinatorial Optimization. PhD thesis, University of Paderborn (2003)
Sellmann, M.: Theoretical Foundations of CP-Based Lagrangian Relaxation. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 634–647. Springer, Heidelberg (2004)
Sellmann, M., Gellermann, T., Wright, R.: Cost-based filtering for shorter path constraints. Constraints 12, 207–238 (2007)
Tsaggouris, G., Zaroliagis, C.: Non-additive Shortest Paths. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 822–834. Springer, Heidelberg (2004)
Zhu, X., Wilhelm, W.E.: A three-stage approach for the resource-constrained shortest path as a sub-problem in column generation. Computers & Operations Research 39(2), 164–178 (2012)
Ziegelmann, M.: Constrained shortest paths and related problems. PhD thesis, Universität des Saarlandes, Germany (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gualandi, S., Malucelli, F. (2012). Resource Constrained Shortest Paths with a Super Additive Objective Function. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-33558-7_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33557-0
Online ISBN: 978-3-642-33558-7
eBook Packages: Computer ScienceComputer Science (R0)