Skip to main content

A Constraint Programming Approach for the Traveling Purchaser Problem

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

  • 2413 Accesses

Abstract

We present a novel approach to the Traveling Purchaser Problem (TPP), based on constraint programming and Lagrangean relaxation. The TPP is a generalization of the Traveling Salesman Problem involved in many real-world applications. Given a set of markets providing products at different prices and a list of products to be purchased, the problem is to determine the route minimizing the sum of the traveling and purchasing costs. We propose in this paper an efficient approach when the number of markets visited in an optimal solution is low. We believe that the real-world applications of this problem often assume a bounded number of visits when they involve a physical routing. It is an actual requirement from our industrial partner which is developing a web application to help their customers’ shopping planning. The approach is tested on academic benchmarks. It proves to be competitive with a state of the art branch-and-cut algorithm and can provide in some cases new optimal solutions for instances with up to 250 markets and 200 products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Karakostas, G.: A 2+epsilon approximation algorithm for the k-mst problem. In: Shmoys, D.B. (ed.) SODA, pp. 754–759. ACM/SIAM (2000)

    Google Scholar 

  2. Benchimol, P., Régin, J.-C., Rousseau, L.-M., Rueher, M., van Hoeve, W.-J.: Improving the Held and Karp Approach with Constraint Programming. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 40–44. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms for the nvalue constraint. Constraints 11, 271–293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Briant, O., Naddef, D.: The optimal diversity management problem. Operations Research 52(4), 515–526 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caseau, Y., Laburthe, F.: Solving small tsps with constraints. In: ICLP, pp. 316–330 (1997)

    Google Scholar 

  6. Christofides, N., Beasley, J.E.: A tree search algorithm for the p-median problem. European Journal of Operational Research 10(2), 196–204 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischetti, M., Hamacher, H.W., Jørnsten, K., Maffioli, F.: Weighted k-cardinality trees: Complexity and polyhedral structure. Networks 24(1), 11–21 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  9. Goemans, M., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24, 296–317 (1992)

    Article  MathSciNet  Google Scholar 

  10. Golden, B., Levy, L., Dahl, R.: Two generalizations of the traveling salesman problem. Omega 9(4), 439–441 (1981)

    Article  Google Scholar 

  11. Gouveia, L., Paias, A., Voí, S.: Models for a traveling purchaser problem with additional side-constraints. Computers and Operations Research 38, 550–558 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hanjoul, P., Peeters, D.: A comparison of two dual-based procedures for solving the p-median problem. European Journal of Operational Research 20(3), 387–396 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. In: Proceedings of the 1961 16th ACM National Meeting, ACM 1961, pp. 71.201–71.204. ACM, New York (1961)

    Google Scholar 

  14. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: Part ii. Mathematical Programming 1, 6–25 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laporte, G., Riera-Ledesma, J., Salazar-González, J.-J.: A branch-and-cut algorithm for the undirected traveling purchaser problem. Operations Research 51, 940–951 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Narula, S.C., Ogbu, U.I., Samuelsson, H.M.: An algorithm for the p-median problem. Operations Research 25(4), 709–713 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pearn, W.L., Chien, R.C.: Improved solutions for the traveling purchaser problem. Computers and Operations Research 25(11), 879–885 (1998)

    Article  MATH  Google Scholar 

  18. Ramesh, T.: Travelling purchaser problem. Opsearch 2(18), 78–91 (1981)

    Google Scholar 

  19. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace (ed.) [24], pp. 557–571

    Google Scholar 

  20. Riera-Ledesma, J., Salazar-Gonzalez, J.-J.: Solving the asymmetric traveling purchaser problem. Annals of Operations Research 144(1), 83–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Riera-Ledesma, J., Salazar-González, J.J.: A heuristic approach for the travelling purchaser problem. European Journal of Operational Research 162(1), 142–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sellmann, M.: Theoretical foundations of cp-based lagrangian relaxation. In: Wallace (ed.) [24], pp. 634–647

    Google Scholar 

  23. Singh, K.N., van Oudheusden, D.L.: A branch and bound algorithm for the traveling purchaser problem. European Journal of Operational Research 97(3), 571–579 (1997)

    Article  MATH  Google Scholar 

  24. Wallace, M. (ed.): CP 2004. LNCS, vol. 3258. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  25. Wolsey, L.A.: Integer programming. Wiley-Interscience series in discrete mathematics and optimization. Wiley (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cambazard, H., Penz, B. (2012). A Constraint Programming Approach for the Traveling Purchaser Problem. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics