Skip to main content

A Filtering Technique for Fragment Assembly- Based Proteins Loop Modeling with Constraints

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Abstract

Methods to predict the structure of a protein often rely on the knowledge of macro sub-structures and their exact or approximated relative positions in space. The parts connecting these sub-structures are called loops and, in general, they are characterized by a high degree of freedom. The modeling of loops is a critical problem in predicting protein conformations that are biologically realistic. This paper introduces a class of constraints that models a general multi-body system; we present a proof of NP-completeness and provide filtering techniques, inspired by inverse kinematics, that can drastically reduce the search space of potential conformations. The paper shows the application of the constraint in solving the protein loop modeling problem, based on fragments assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Backofen, R., Will, S.: A Constraint-Based Approach to Fast and Exact Structure Prediction in 3-Dimensional Protein Models. Constraints 11(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barahona, P., Krippahl, L.: Constraint programming in structural bioinformatics. Constraints 13(1-2), 3–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-David, M., Noivirt-Brik, O., Paz, A., Prilusky, J., Sussman, J.L., Levy, Y.: Assessment of CASP8 structure predictions for template free targets. Proteins 77, 50–65 (2009)

    Article  Google Scholar 

  4. Best, M., Bhattarai, K., Campeotto, F., Dal Pal’u, A., Dang, H., Dovier, A., Fioretto, F., Fogolari, F., Le, T., Pontelli, E.: Introducing FIASCO: Fragment-based Interactive Assembly for protein Structure prediction with COnstraints. In: Proc. of Workshop on Constraint Based Methods for Bioinformatics (2011), http://www.dmi.unipg.it/WCB11/wcb11proc.pdf

  5. Cahill, S., Cahill, M., Cahill, K.: On the kinematics of protein folding. Journal of Computational Chemistry 24(11), 1364–1370 (2003)

    Article  Google Scholar 

  6. Canutescu, A., Dunbrack, R.: Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12, 963–972 (2003)

    Article  Google Scholar 

  7. Choi, Y., Deane, C.M.: FREAD revisited: Accurate loop structure prediction using a database search algorithm. Proteins 78(6), 1431–1440 (2010)

    Google Scholar 

  8. Dal Palù, A., Dovier, A., Fogolari, F.: Constraint logic programming approach to protein structure prediction. BMC Bioinformatics 5, 186 (2004)

    Article  Google Scholar 

  9. Dal Palù, A., Dovier, A., Fogolari, F., Pontelli, E.: CLP-based protein fragment assembly. TPLP 10(4-6), 709–724 (2010)

    MATH  Google Scholar 

  10. Dal Palù, A., Dovier, A., Fogolari, F., Pontelli, E.: Exploring Protein Fragment Assembly Using CLP. In: Walsh, T. (ed.) IJCAI, pp. 2590–2595. IJCAI/AAAI (2011)

    Google Scholar 

  11. Dal Palù, A., Dovier, A., Pontelli, E.: A constraint solver for discrete lattices, its parallelization, and application to protein structure prediction. Softw., Pract. Exper. 37(13), 1405–1449 (2007)

    Article  Google Scholar 

  12. Dal Palù, A., Dovier, A., Pontelli, E.: Computing approximate solutions of the protein structure determination problem using global constraints on discrete crystal lattices. IJDMB 4(1), 1–20 (2010)

    Article  Google Scholar 

  13. Dal Palù, A., Spyrakis, F., Cozzini, P.: A new approach for investigating protein flexibility based on Constraint Logic Programming: The first application in the case of the estrogen receptor. European Journal of Medicinal Chemistry 49, 127–140 (2012)

    Article  Google Scholar 

  14. Deane, C., Blundell, T.: CODA. A combined algorithm for predicting the structurally variable regions of protein models. Protein Sci. 10, 599–612 (2001)

    Article  Google Scholar 

  15. Dotú, I., Cebrián, M., Van Hentenryck, P., Clote, P.: On Lattice Protein Structure Prediction Revisited. IEEE/ACM Trans. Comput. Biology Bioinform. 8(6), 1620–1632 (2011)

    Article  Google Scholar 

  16. Felts, A., Gallicchio, E., Chekmarev, D., Paris, K., Friesner, R., Levy, R.: Prediction of protein loop conformations using AGBNP implicit solvent model and torsion angle sampling. J. Chem. Theory Comput. 4, 855–868 (2008)

    Article  Google Scholar 

  17. Fiser, A., Do, R., Sali, A.: Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000)

    Article  Google Scholar 

  18. Fogolari, F., Pieri, L., Dovier, A., Bortolussi, L., Giugliarelli, G., Corazza, A., Esposito, G., Viglino, P.: Scoring predictive models using a reduced representation of proteins: model and energy definition. BMC Structural Biology 7(15), 1–17 (2007)

    Google Scholar 

  19. Fujitsuka, Y., Chikenji, G., Takada, S.: SimFold energy function for de novo protein structure prediction: consensus with Rosetta. Proteins 62, 381–398 (2006)

    Article  Google Scholar 

  20. Hartenberg, R., Denavit, J.: A kinematic notation for lower pair mechanisms based on matrices. Journal of Applied Mechanics 77, 215–221 (1995)

    Google Scholar 

  21. Jacobson, M., Pincus, D., Rapp, C., Day, T., Honig, B., Shaw, D., Friesner, R.: A hierarchical approach to all-atom protein loop prediction. Proteins 55, 351–367 (2004)

    Article  Google Scholar 

  22. Jamroz, M., Kolinski, A.: Modeling of loops in proteins: a multi-method approach. BMC Struct. Biol. 10(5) (2010)

    Google Scholar 

  23. Jauch, R., Yeo, H., Kolatkar, P.R., Clarke, N.D.: Assessment of CASP7 structure predictions for template free targets. Proteins 69, 57–67 (2007)

    Article  Google Scholar 

  24. Jones, D.: Predicting novel protein folds by using FRAGFOLD. Proteins 45, 127–132 (2006)

    Article  Google Scholar 

  25. Karplus, K., Karchin, R., Draper, J., Casper, J., Mandel-Gutfreund, Y., Diekhans, M., Source, R.H.: Combining local structure, fold-recognition, and new fold methods for protein structure prediction. Proteins 53(6), 491–497 (2003)

    Article  Google Scholar 

  26. Kinch, L., Yong Shi, S., Cong, Q., Cheng, H., Liao, Y., Grishin, N.V.: CASP9 assessment of free modeling target predictions. Proteins 79, 59–73 (2011)

    Article  Google Scholar 

  27. LaValle, S.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  28. Lee, J., Kim, S., Joo, K., Kim, I., Lee, J.: Prediction of protein tertiary structure using profesy, a novel method based on fragment assembly and conformational space annealing. Proteins 56(4), 704–714 (2004)

    Article  Google Scholar 

  29. Lee, J., Lee, D., Park, H., Coutsias, E., Seok, C.: Protein Loop Modeling by Using Fragment Assembly and Analytical Loop Closure. Proteins 78(16), 3428–3436 (2010)

    Article  Google Scholar 

  30. Liu, P., Zhu, F., Rassokhin, D., Agrafiotis, D.: A self-organizing algorithm for modeling protein loops. PLOS Comput. Biol. 5(8) (2009)

    Google Scholar 

  31. Rapp, C.S., Friesner, R.A.: Prediction of loop geometries using a generalized born model of solvation effects. Proteins 35, 173–183 (1999)

    Article  Google Scholar 

  32. Shen, M., Sali, A.: Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524 (2006)

    Article  Google Scholar 

  33. Shmygelska, A., Hoos, H.: An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics 6 (2005)

    Google Scholar 

  34. Simons, K., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997)

    Article  Google Scholar 

  35. Spassov, V., Flook, P., Yan, L.: LOOPER: a molecular mechanics-based algorithm for protein loop prediction. Protein Eng. 21, 91–100 (2008)

    Article  Google Scholar 

  36. Xiang, Z., Soto, C., Honig, B.: Evaluating conformal energies: the colony energy and its application to the problem of loop prediction. PNAS 99, 7432–7437 (2002)

    Article  Google Scholar 

  37. Zhou, H., Zhou, Y.: Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11, 2714–2726 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Campeotto, F., Dal Palù, A., Dovier, A., Fioretto, F., Pontelli, E. (2012). A Filtering Technique for Fragment Assembly- Based Proteins Loop Modeling with Constraints. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics