Skip to main content

Reasoning over Biological Networks Using Maximum Satisfiability

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

Systems biology is with no doubt one of the most compelling fields for a computer scientist. Modelling such systems is per se a major challenge, but the ultimate goal is to reason over those systems. We focus on modelling and reasoning over biological networks using Maximum Satisfiability (MaxSAT). Biological networks are represented by an influence graph whose vertices represent the genes of the network and edges represent interactions between genes. Given an influence graph and an experimental profile, the first step is to check for mutual consistency. In case of inconsistency, a repair is suggested. In addition, what is common to all solutions/optimal repairs is also provided. This information, named prediction, is of particular interest from a user’s point of view. Answer Set Programming (ASP) has been successfully applied to biological networks in the recent past. In this work, we give empirical evidence that MaxSAT is by far more adequate for solving this problem. Moreover, we show how concepts well studied in the fields of MaxSAT and CP, such as backbones and unsatisfiable subformulas, can be naturally related to this practical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Workshops on Constraint Based Methods for Bioinformatics (WCB) (2005-2012)

    Google Scholar 

  2. Allen, T., Herrgård, M., Liu, M., Qiu, Y., Glasner, J., Blattner, F., Palsson, B.: Genome-scale analysis of the uses of the escherichia coli genome: model-driven analysis of heterogeneous data sets. Journal of Bacteriology 185(21), 6392–6399 (2003)

    Article  Google Scholar 

  3. Barahona, P., Krippahl, L., Perriquet, O.: Bioinformatics: a challenge to constraint programming. In: Hybrid Optimization, vol. 45, pp. 463–487. Springer (2011)

    Google Scholar 

  4. Bobrow, D.: Qualitative reasoning about physical systems: an introduction. Artificial Intelligence 24(1-3), 1–5 (1984)

    Article  Google Scholar 

  5. Bradley, M., Beach, M., de Koning, A., Pratt, T., Osuna, R.: Effects of fis on escherichia coli gene expression during different growth stages. Microbiology 153(9), 2922–2940 (2007)

    Article  Google Scholar 

  6. Corblin, F., Bordeaux, L., Fanchon, E., Hamadi, Y., Trilling, L.: Connections and integration with SAT solvers: a survey and a case study in computational biology. In: Hybrid Optimization, vol. 45, pp. 425–461. Springer (2011)

    Google Scholar 

  7. Corblin, F., Fanchon, E., Trilling, L.: Applications of a formal approach to decipher discrete genetic networks. BMC Bioinformatics 11, 385 (2010)

    Article  Google Scholar 

  8. Corblin, F., Tripodi, S., Fanchon, E., Ropers, D., Trilling, L.: A declarative constraint-based method for analyzing discrete genetic regulatory networks. Biosystems 98(2), 91–104 (2009)

    Article  Google Scholar 

  9. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  10. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Gama-Castro, S., Jiménez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Peñaloza-Spinola, M., Contreras-Moreira, B., Segura-Salazar, J., Muñiz-Rascado, L., Martínez-Flores, I., Salgado, H., Bonavides-Martínez, C., Abreu-Goodger, C., Rodríguez-Penagos, C., Miranda-Ríos, J., Morett, E., Merino, E., Huerta, A., Treviño-Quintanilla, L., Collado-Vides, J.: RegulonDB (version 6.0): gene regulation model of escherichia coli k-12 beyond transcription, active (experimental) annotated promoters and textpresso navigation. Nucleic Acids Research 36(Database Issue), 120–124 (2008)

    Google Scholar 

  12. Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T., Siegel, A., Thiele, S., Veber, P.: Repair and prediction (under inconsistency) in large biological networks with answer set programming. In: International Conference on Principles of Knowledge Representation and Reasoning, pp. 497–507 (2010)

    Google Scholar 

  13. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the Potsdam answer set solving collection. AI Communications 24(2), 107–124 (2011)

    MATH  MathSciNet  Google Scholar 

  14. Gebser, M., Kaufmann, B., Schaub, T.: The Conflict-Driven Answer Set Solver clasp: Progress Report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 509–514. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Gebser, M., König, A., Schaub, T., Thiele, S., Veber, P.: The BioASP library: ASP solutions for systems biology. In: IEEE International Conference on Tools with Artificial Intelligence, pp. 383–389 (2010)

    Google Scholar 

  16. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological networks with answer set programming. Theory and Practice of Logic Programing 11(2-3), 323–360 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gregory, P., Fox, M., Long, D.: A New Empirical Study of Weak Backdoors. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 618–623. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Guziolowski, C., Veber, P., Le Borgne, M., Radulescu, R., Siegel, A.: Checking consistency between expression data and large scale regulatory networks: a case study. Journal of Biological Physics and Chemistry 7(2), 37–43 (2007)

    Article  Google Scholar 

  19. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar solutions in constraint programming. In: AAAI Conference on Artificial Intelligence, pp. 372–377 (2005)

    Google Scholar 

  20. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from constraint networks. In: European Conference on Artificial Intelligence, pp. 113–117 (2006)

    Google Scholar 

  21. Hsu, E.I., Muise, C.J., Christopher Beck, J., McIlraith, S.A.: Probabilistically Estimating Backbones and Variable Bias: Experimental Overview. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 613–617. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  23. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In: AAAI Conference on Artificial Intelligence, pp. 1368–1373 (2005)

    Google Scholar 

  24. Marques-Silva, J.: Minimal unsatisfiability: models, algorithms and applications. In: IEEE International Symposium on Multiple-Valued Logic, pp. 9–14 (2010)

    Google Scholar 

  25. Marques-Silva, J., Manquinho, V.: Towards More Effective Unsatisfiability-Based Maximum Satisfiability Algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 225–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Marques-Silva, J., Mikoláš, J., Lynce, I.: On computing backbones of propositional theories. In: European Conference on Artificial Intelligence, pp. 15–20 (2010)

    Google Scholar 

  27. Menaï, M.: A two-phase backbone-based search heuristic for partial MAX-SAT – an initial investigation. In: Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, pp. 681–684 (2005)

    Google Scholar 

  28. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic ‘phase transitions’. Nature 400(6740), 133–137 (1999)

    Article  MathSciNet  Google Scholar 

  29. Siegel, A., Radulescu, O., Le Borgne, M., Veber, P., Ouy, J., Lagarrigue, S.: Qualitative analysis of the relation between DNA microarray data and behavioral models of regulation networks. Biosystems 84(2), 153–174 (2006)

    Article  Google Scholar 

  30. Slaney, J., Walsh, T.: Backbones in optimization and approximation. In: International Joint Conference on Artificial Intelligence, pp. 254–259 (2001)

    Google Scholar 

  31. Soliman, S.: Constraint programming for the dynamical analysis of biochemical systems – a survey. Technical Report Deliverable 1.6, ANR CALAMAR, ANR-08-SYSC-003 (2011)

    Google Scholar 

  32. Soulé, C.: Mathematical approaches to differentiation and gene regulation. Comptes Rendus Biologies 329(1), 13–20 (2006)

    Article  Google Scholar 

  33. Zhang, W., Rangan, A., Looks, M.: Backbone guided local search for maximum satisfiability. In: International Joint Conference on Artificial Intelligence, pp. 1179–1184 (2003)

    Google Scholar 

  34. Zhu, C., Weissenbacher, G., Sethi, D., Malik, S.: SAT-based techniques for determining backbones for post-silicon fault localisation. In: IEEE International High Level Design Validation and Test Workshop, pp. 84–91 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guerra, J., Lynce, I. (2012). Reasoning over Biological Networks Using Maximum Satisfiability. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics