Skip to main content

Length Estimation for the Adjusted Exponential Parameterization

  • Conference paper
Computer Vision and Graphics (ICCVG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7594))

Included in the following conference series:

  • 3621 Accesses

Abstract

In this paper we discuss the problem of interpolating the so-called reduced data \(Q_m=\{q_i\}_{i=0}^m\) to estimate the length d(γ) of the unknown curve γ sampled in accordance with γ(t i ) = q i . The main issue for such non-parametric data fitting (given a fixed interpolation scheme) is to complement the unknown knots \(\{t_i\}_{i=0}^m\) with \(\{\hat t_i\}_{i=0}^m\), so that the respective convergence prevails and yields possibly fast orders. We invoke here the so-called exponential parameterizations (including centripetal) combined with piecewise-quadratics (and -cubics). Such family of guessed knots \(\{\hat{t}_i^{\lambda}\}_{i=0}^m\) (with 0 ≤ λ ≤ 1) comprises well-known cases. Indeed, for λ = 0 a blind uniform guess is selected. When λ = 1/2 the so-called centripetal parameterization is invoked. On the other hand, if λ = 1 cumulative chords are applied. The first case yields a bad length estimation (with possible divergence). In opposite, cumulative chords match the convergence orders established for the non-reduced data i.e. for \((\{t_i\}_{i=0}^m, Q_m)\). In this paper we show that, for exponential parameterization, while λ ranges from one to zero, diminishing convergence rates in length approximation occur. In addition, we discuss and verify a method of possible improvement for such decreased rates based on iterative knot adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Boor, C.: A Practical Guide to Splines. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  2. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Computer-Aided Design 21(6), 363–370 (1989)

    Article  MATH  Google Scholar 

  3. Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA Journal of Numerical Analysis 26, 25–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Janik, M., Kozera, R., Kozioł, P.: Reduced data for curve modeling - applications in graphics. Computer Vision and Physics (submitted)

    Google Scholar 

  5. Kozera, R.: Curve modeling via interpolation based on multidimensional reduced data. Studia Informatica 25(4B(61)), 1–140 (2004)

    Google Scholar 

  6. Kozera, R., Noakes, L.: C 1 interpolation with cumulative chord cubics. Fundamenta Informaticae 61(3-4), 285–301 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific Publishing Company, Singapore (2000)

    Book  MATH  Google Scholar 

  8. Noakes, L., Kozera, R.: Cumulative chords piecewise-quadratics and piecewise-cubics. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties of Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 59–75. Kluver Academic Publishers, The Netherlands (2006)

    Chapter  Google Scholar 

  9. Noakes, L., Kozera, R., Klette, R.: Length Estimation for Curves with Different Samplings. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 339–351. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kozera, R., Noakes, L., Rasiński, M. (2012). Length Estimation for the Adjusted Exponential Parameterization. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science, vol 7594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33564-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33564-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33563-1

  • Online ISBN: 978-3-642-33564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics