Skip to main content

Automatic Shape Generation Based on Quadratic Four-Dimensional Fractals

  • Conference paper
Computer Vision and Graphics (ICCVG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7594))

Included in the following conference series:

  • 3593 Accesses

Abstract

Amorphous shapes have always been a challenge to CG modelers. Apparently natural in look, their topology is hard to retrieve manually. Scientists from different backgrounds have tried to understand and model such phenomena. Fractals belong to the most representative solutions, but still are rare in 3D domain. Methods for generation of fractal objects use mainly quaternion representations for nonlinear systems in four dimensions. In such a case advanced volumetric graphics methods need to be applied to convey multidimensional information. In the paper, we propose a simple and effective approach to use four-dimensional escape-time fractals as automated shape generator. We extend general quadratic fractal maps to four dimensions. The algorithm results in diverse aesthetically balanced volumetric shapes delivered in real time on a modern PC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sprott, J.C., Pickover, C.A.: Automatic generation of general quadratic map basins. Computers & Graphics 19(2), 309–313 (1995)

    Article  Google Scholar 

  2. Nikiel, S., Goinski, A.: Generation of volumetric escape time fractals. Computers & Graphics 27(6), 977–982 (2003)

    Article  Google Scholar 

  3. Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: Instant architecture. ACM Transactions on Graphics 22(3), 669–677 (2003)

    Article  Google Scholar 

  4. Parish, Y., Muller, P.: Procedural Modeling of Cities. In: Fiume, E. (ed.) Proceedings (SIGGRAPH 2001), pp. 301–308. ACM Press (2001)

    Google Scholar 

  5. Greuter, S., Parker, J., Stewart, N., Leach, G.: Real-time procedural generation of pseudo infinite cities. In: Proceedings (GRAPHITE 2003), pp. 87–95. ACM Press (2003)

    Google Scholar 

  6. Peytavie, A., Galin, E., Grosjean, J., Merrilou, S.: Arches: a Framework for Modelling Complex Terrains, Computer Graphics Forum. In: Proceedings EUROGRAPHICS, vol. 28(2), pp. 457–467 (2009)

    Google Scholar 

  7. Bouthors, A., Neyret, F.: Modelling Clouds Shape. In: Proceedings EUROGRAPHICS (2004)

    Google Scholar 

  8. Schpok, J., Simons, J., Ebert, D., Hansen, C.: A real-time cloud modeling, rendering, and animation system. In: Symposium on Computer Animation 2003, pp. 160–166 (2003)

    Google Scholar 

  9. Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T., Nishita, T.: A simple, efficient method for realistic animation of clouds. In: Proceedings of ACM SIGGRAPH 2000, pp. 19–28 (2000)

    Google Scholar 

  10. Ebert, D.: Volumetric procedural implicit functions: A cloud is born. In: Whitted, T. (ed.) SIGGRAPH 97 Technical Sketches Program. ACM SIGGRAPH. Addison Wesley (1997) ISBN 0-89791-896-7

    Google Scholar 

  11. Elinas, P., Sturzlinger, W.: Real-time rendering of 3D clouds. Journal of Graphics Tools 5(4), 33–45 (2000)

    Article  MATH  Google Scholar 

  12. Nishita, T., Nakamae, E., Dobashi, Y.: Display of clouds taking into account multiple anisotropic scattering and sky light. In: Rushmeier, H. (ed.) SIGGRAPH 96 Conference Proceedings, ACM SIGGRAPH, pp. 379–386. Addison Wesley (1996)

    Google Scholar 

  13. Harris, M.J., Lastra, A.: Real-time cloud rendering. Computer Graphics Forum 20(3), 76–84 (2001)

    Article  Google Scholar 

  14. Gardner, G.Y.: Simulation of natural scenes using textured quadric surfaces. In: Christiansen, H. (ed.) Computer Graphics (SIGGRAPH 1984 Proceedings), vol. 18, pp. 11–20 (1984)

    Google Scholar 

  15. Gardner, G.Y.: Visual simulation of clouds. In: Barsky, B.A. (ed.) Computer Graphics (SIGGRAPH 1985 Proceedings), vol. 19, pp. 297–303 (1985)

    Google Scholar 

  16. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants, pp. 101–107. Springer (1991) ISBN 978-0387972978

    Google Scholar 

  17. Am Ende, B.A.: 3D Mapping of Underwater Caves. IEEE Computer Graphics Applications 21(2), 14–20 (2001)

    Article  Google Scholar 

  18. Boggus, M., Crawfis, R.: Procedural Creation of 3D Solution Cave Models. In: Proceedings of the 20th IASTED International Conference on Modelling and Simulation, pp. 180–186 (2009)

    Google Scholar 

  19. Boggus, M., Crawfis, R.: Explicit Generation of 3D Models of Solution Caves for Virtual Environments. In: Proceedings of the 2009 International Conference on Computer Graphics and Virtual Reality, pp. 85–90 (2009)

    Google Scholar 

  20. Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular Automata for Real-time Generation of Infinite Cave Levels. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games (PC Games 2010), pp. 1–4 (2010)

    Google Scholar 

  21. Schuchardt, P., Bowman, D.A.: The Benefits of Immersion for Spatial Understanding of Complex Underground Cave Systems. In: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology (VRST 2007), pp. 121–124 (2007)

    Google Scholar 

  22. Clempner, J.B., Poznyak, A.S.: Convergence method, properties and computational complexity for Lyapunov games. The International Journal of Applied Mathematics and Computer Science 21(2), 349–361 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Di Trapani, L.J., Inanc, T.: NTGsim, A graphical user interface and a 3D simulator for nonlinear trajectory generation methodology. The International Journal of Applied Mathematics and Computer 20(2), 305–316 (2010)

    MATH  Google Scholar 

  24. Norton, A.: Generation and display of geometric fractals in 3D. Computer Graphics (16), 61–67 (1982)

    Google Scholar 

  25. Kantor, I.L.: Hypercomplex Numbers. Springer, New York (1989)

    Book  MATH  Google Scholar 

  26. Bedding, S., Briggs, K.: Iteration of quaternion maps. Int.Journal Bif. and Chaos, Appl. Sci. Eng. (5), 887–891 (1995)

    Google Scholar 

  27. Holbrook, J.A.R.: Quaternionic Fatou-Julia Sets. Annals Sci. Math., Quebcec (11), 79–94 (1987)

    Google Scholar 

  28. Rochon, D.: A generalized Mandelbrot set for bicomplex numbers. Fractals 8(2), 355–368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goiński, A., Zawadzki, T., Nikiel, S. (2012). Automatic Shape Generation Based on Quadratic Four-Dimensional Fractals. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science, vol 7594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33564-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33564-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33563-1

  • Online ISBN: 978-3-642-33564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics