Skip to main content

Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration

  • Conference paper
Proceedings of the 21st International Meshing Roundtable

Abstract

This paper introduces a new method for anisotropic surface meshing. From an input polygonal mesh and a specified number of vertices, the method generates a curvature-adapted mesh. The main idea consists in transforming the 3d anisotropic space into a higher dimensional isotropic space (typically 6d or larger). In this high dimensional space, the mesh is optimized by computing a Centroidal Voronoi Tessellation (CVT), i.e. the minimizer of a C 2 objective function that depends on the coordinates at the vertices (quantization noise power). Optimizing this objective function requires to compute the intersection between the (higher dimensional) Voronoi cells and the surface (Restricted Voronoi Diagram). The method overcomes the d-factorial cost of computing a Voronoi diagram of dimension d by directly computing the restricted Voronoi cells with a new algorithm that can be easily parallelized (Vorpaline: Voronoi Parallel Linear Enumeration). The method is demonstrated with several examples comprising CAD and scanned meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CGAL, http://www.cgal.org

  2. Alauzet, F., Loseille, A.: High-order sonic boom modeling based on adaptive methods. J. Comput. Physics 229(3), 561–593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alliez, P., Colin de Verdière, E., Devillers, O., Isenburg, M.: Centroidal Voronoi diagrams for isotropic remeshing. Graphical Models 67(3), 204–231 (2003)

    Article  Google Scholar 

  4. Bradford Barber, C.: David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software 22(4), 469–483 (1996)

    Article  MATH  Google Scholar 

  5. Boissonnat, J.-D., Wormser, C., Yvinec, M.: Anisotropic Diagrams: Labelle Shewchuk approach revisited. Theo. Comp. Science (408), 163–173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boissonnat, J.-D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press (1998)

    Google Scholar 

  7. Borouchaki, H., George, P.-L.: Delaunay Triangulation and Meshing: Application to Finite Elements. Hermès (1998)

    Google Scholar 

  8. Borouchaki, H., George, P.-L., Hecht, F., Laug, P., Saltel, E.: Delaunay mesh generation governed by metric specifications. part 1: Algorithms. Finite Elements in Analysis and Design 25, 61–83 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borouchaki, H., George, P.-L., Hecht, F., Laug, P., Saltel, E.: Delaunay mesh generation governed by metric specifications. part 2: Application examples. Finite Elements in Analysis and Design 25, 85–109 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Canas, G.D., Gortler, S.J.: Surface remeshing in arbitrary codimensions. Vis. Comput. 22(9), 885–895 (2006)

    Article  Google Scholar 

  11. Canas, G.D., Gortler, S.J.: Shape operator metric for surface normal approximation. In: International Meshing Roundtable Conference Proceedings, Salt Lake City (November 2009)

    Google Scholar 

  12. Cheng, S.-W., Dey, T.K., Levine, J.A.: A practical delaunay meshing algorithm for alarge class of domains. In: 16th International Meshing Roundtable Conf. Proc., pp. 477–494 (2007)

    Google Scholar 

  13. Cohen, A., Dyn, N., Hecht, F., Mirebeau, J.-M.: Adaptive multiresolution analysis based on anisotropic triangulations. Math. Comput. 81(278) (2012)

    Google Scholar 

  14. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Transactions on Graphics 23, 905–914 (2004)

    Article  Google Scholar 

  15. d’Azevedo, E.: Optimal triangular mesh generation by coordinate transformation. Technical report, University of Waterloo (1989)

    Google Scholar 

  16. Dobrzynski, C., Frey, P.J.: Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th International Meshing Roundtable, pp. 177–194. États-Unis (2008)

    Google Scholar 

  17. Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM Journal on Numerical Analysis 44(1), 102–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Review 41(4), 637–676 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Du, Q., Gunzburger, M.: Grid generation and optimization based on centroidal Voronoi tessellations. Applied Mathematics and Computation 133(2-3), 591–607 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, Q., Gunzburger, M.D., Ju, L.: Constrained centroidal Voronoi tesselations for surfaces. SIAM Journal on Scientific Computing 24(5), 1488–1506 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, Q., Wang, D.: Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. International Journal for Numerical Methods in Engineering 56, 1355–1373 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applications. SIAM Journal on Scientific Computing 26(3), 737–761 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karypis, G., Kumar, V.: Metis - unstructured graph partitioning and sparse matrix ordering system, version 2.0. Technical report (1995)

    Google Scholar 

  24. Kleb, W.: Nasa technical brief - advanced computational fluid dynamics and mesh generation (2009), http://www.techbriefs.com/component/content/article/5075

  25. Kovacs, D., Myles, A., Zorin, D.: Anisotropic quadrangulation. In: Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, SPM 2010, pp. 137–146. ACM, New York (2010)

    Chapter  Google Scholar 

  26. Lai, Y.K., Zhou, Q.Y., Hu, S.M., Wallner, J., Pottmann, H.: Robust feature classification and editing. IEEE Trans. Visualization and Computer Graphics (2007)

    Google Scholar 

  27. Labelle, F., Shewchuk, J.-R.: Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: SCG 2003: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 191–200 (2003)

    Google Scholar 

  28. Leibon, G., Letscher, D.: Delaunay triangulations and voronoi diagrams for riemannian manifolds. In: SCG Conf. Proc., pp. 341–349. ACM

    Google Scholar 

  29. Lévy, B., Liu, Y.: Lp Centroidal Voronoi Tesselation and its applications. ACM Transactions on Graphics 29(4) (2010)

    Google Scholar 

  30. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., Yang, C.: On centroidal Voronoi tessellation—energy smoothness and fast computation. ACM Transactions on Graphics 28(4), 1–17 (2009)

    Article  Google Scholar 

  31. Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Loseille, A., Alauzet, F.: Continuous mesh framework part i: Well-posed interpolation error. SIAM J. Numerical Analysis 49(1), 38–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Loseille, A., Alauzet, F.: Continuous mesh framework part ii: Validations and applications. SIAM J. Numerical Analysis 49(1), 61–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mirebeau, J.-M., Cohen, A.: Anisotropic smoothness classes: From finite element approximation to image models. Journal of Mathematical Imaging and Vision 38(1), 52–69 (2010)

    Article  MathSciNet  Google Scholar 

  35. Mirebeau, J.-M., Cohen, A.: Greedy bisection generates optimally adapted triangulations. Math. Comput. 81(278) (2012)

    Google Scholar 

  36. Mount, D.M., Arya, S.: ANN: A library for approximate nearest neighbor searching. In: CGC Workshop on Computational Geometry, pp. 33–40 (1997)

    Google Scholar 

  37. Nash, J.F.: The imbedding problem for riemannian manifolds. Annals of Mathematics 63, 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peyré, G., Cohen, L.: Surface segmentation using geodesic centroidal tesselation. In: 2nd International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT 2004), pp. 995–1002 (2004)

    Google Scholar 

  39. Shewchuk, J.R.: What is a good linear finite element? - interpolation, conditioning, anisotropy, and quality measures. Technical report. In: Proc. of the 11th International Meshing Roundtable (2002)

    Google Scholar 

  40. Sutherland, I., Hodgman, G.W.: Reentrant polygon clipping. Communications of the ACM 17, 32–42 (1974)

    Article  MATH  Google Scholar 

  41. Turk, G.: Generating random points in triangles. In: Graphics Gems, pp. 24–28. Academic Press Professional, Inc, San Diego (1990)

    Google Scholar 

  42. Valette, S., Chassery, J.-M., Prost, R.: Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Transactions on Visualization and Computer Graphics 14(2), 369–381 (2008)

    Article  Google Scholar 

  43. Yan, D.-M., Wang, W., Lévy, B., Liu, Y.: Efficient computation of 3d clipped voronoi diagram. In: GMP Conf. Proc., pp. 269–282 (2010)

    Google Scholar 

  44. Yan, D.-M., Lévy, B., Liu, Y., Sun, F., Wang, W.: Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Computer Graphics Forum 28(5), 1445–1454 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Lévy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lévy, B., Bonneel, N. (2013). Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration. In: Jiao, X., Weill, JC. (eds) Proceedings of the 21st International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33573-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33573-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33572-3

  • Online ISBN: 978-3-642-33573-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics