Skip to main content

An h-r Moving Mesh Method for One-Dimensional Time-Dependent PDEs

  • Conference paper
Proceedings of the 21st International Meshing Roundtable

Summary

We propose a new moving mesh method suitable for solving time-dependent partial differential equations (PDEs) in ℝ1 which have fine scale solution structures that develop or dissipate. A key feature of the method is its ability to add or remove mesh nodes in a smooth manner and that it is consistent with r-refinement schemes. Central to our approach is an implicit representation of a Lagrangian mesh as iso-contours of a level set function. The implicitly represented mesh is evolved by updating the underlying level set function using a derived level set moving mesh partial differential equation (LMPDE). The discretized LMPDE evolves the level set function in a manner that quasi-equidistributes a specified monitor function. Beneficial attributes of the method are that this construction guarantees that the mesh does not tangle, and that connectivity is retained. Numerical examples are provided to demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askes, H., Rodríguez-Ferran, A.: A combined hr-adaptive scheme based on domain subdivision. formulation and linear examples. International Journal for Numerical Methods in Engineering 51(3), 253–273 (2001)

    Article  MATH  Google Scholar 

  2. Cao, W., Huang, W., Russell, R.D.: A moving mesh method in multiblock domains with application to a combustion problem. Numer. Methods Partial Differential Equations 15(4), 449–467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Capon, P.J., Jimack, P.K.: On the adaptive finite element solution of partial differential equations using h-r-refinement. Technical report, University of Leeds (1996)

    Google Scholar 

  4. de Boor, C.: Good approximation by splines with variable knots. In: Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972). Internat. Ser. Numer. Math., vol. 21, pp. 57–72. Birkhäuser, Basel (1973)

    Google Scholar 

  5. de Boor, C.: Good approximation by splines with variable knots. II. In: Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973). Lecture Notes in Math., vol. 363, pp. 12–20. Springer, Berlin (1974)

    Chapter  Google Scholar 

  6. Gelinas, R.J., Doss, S.K., Miller, K.: The moving finite element method: applications to general partial differential equations with multiple large gradients. Journal of Computational Physics 40(1), 202–249 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, W., Kamenski, L., Lang, J.: A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates. J. Comput. Phys. 229(6), 2179–2198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, W., Ren, Y., Russell, R.D.: Moving mesh methods based on moving mesh partial differential equations. J. Comput. Phys. 113(2), 279–290 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J. Numer. Anal. 31(3), 709–730 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, W., Russell, R.D.: Analysis of moving mesh partial differential equations with spatial smoothing. SIAM J. Numer. Anal. 34(3), 1106–1126 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Applied Mathematical Sciences, vol. 174, p. 432. Springer, New York (2011)

    Book  MATH  Google Scholar 

  12. Lang, J., Cao, W., Huang, W., Russell, R.D.: A two-dimensional moving finite element method with local refinement based on a posteriori error estimates. Appl. Numer. Math. 46(1), 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liao, G., Liu, F., de la Pena, G.C., Peng, D., Osher, S.: Level-set-based deformation methods for adaptive grids. J. Comput. Phys. 159(1), 103–122 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Piggott, M.D., Pain, C.C., Gorman, G.J., Power, P.W., Goddard, A.J.H.: h, r, and hr adaptivity with applications in numerical ocean modelling. Ocean Modelling 10(1-2), 95–113 (2005)

    Article  Google Scholar 

  15. Thompson, J.F., Soni, B.K., Weatherill, N.P.: Handbook of Grid Generation. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  16. Wang, H., Tang, H.: An efficient adaptive mesh redistribution method for a non-linear Dirac equation. J. Comput. Phys. 222(1), 176–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yuan, L., Tang, T.: Resolving the shock-induced combustion by an adaptive mesh redistribution method. J. Comput. Phys. 224, 587–600 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ong, B., Russell, R., Ruuth, S. (2013). An h-r Moving Mesh Method for One-Dimensional Time-Dependent PDEs. In: Jiao, X., Weill, JC. (eds) Proceedings of the 21st International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33573-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33573-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33572-3

  • Online ISBN: 978-3-642-33573-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics