Skip to main content

Context-Based Query Using Dependency Structures Based on Latent Topic Model

  • Conference paper
Model and Data Engineering (MEDI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7602))

Included in the following conference series:

  • 656 Accesses

Abstract

To improve and enhance information retrieval techniques, there have been many approaches proposed so far, but few investigation which capture semantic aspects of queries directly. Here we propose a new approach to retrieve contextual dependencies in Japanese based on latent topics. We examine some experimental results to see the effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Grossman, D.A., Frieder, O.: Information RetrievalAlgorithms and Heuristics, 2nd edn. Springer (2004)

    Google Scholar 

  3. Hofmann, T.: Probabilistic Latent Semantic Indexing. In: Proc. of the Twenty-Second Annual International SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999 (1999)

    Google Scholar 

  4. Kurohashi, S., Nagao, M.: KN Parser: Japanese Dependency/Case Structure Analyzer, In: Proc. of the Workshop on Sharable Natural Language Resources (1994)

    Google Scholar 

  5. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT Press (1999)

    Google Scholar 

  6. Shinzato, K., Kurohashi, S.: Exploiting Term Importance Categories and Dependency Relations for Natural Language Search. In: Proc. of the Second Workshop on NLPIX 2010, Beijing, China, pp. 2–11 (2010)

    Google Scholar 

  7. Wei, X., Bruce Croft, W.: LDA-Based Document Models for Ad-Hoc Retrieval. In: Proc. of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (2006)

    Google Scholar 

  8. Yanagisawa, T., Miura, T., Shioya, I.: Sentences Generation by Frequent Parsing Patterns. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 53–62. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Yanagisawa, T., Miura, T.: Sentence Generation for Stream Annoucement. In: IEEE Intn’l Pacific Rim Conference on Communications, Computers and Signal Processing, PACRIM (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yanagisawa, T., Miura, T. (2012). Context-Based Query Using Dependency Structures Based on Latent Topic Model. In: Abelló, A., Bellatreche, L., Benatallah, B. (eds) Model and Data Engineering. MEDI 2012. Lecture Notes in Computer Science, vol 7602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33609-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33609-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33608-9

  • Online ISBN: 978-3-642-33609-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics