Abstract
In this paper we present a set of 3D-rigid motion invariant texture features. We experimentally establish that when they are combined with mean attenuation intensity differences the new augmented features are capable of discriminating normal from abnormal liver tissue in arterial phase contrast enhanced X-ray CT–scans with high sensitivity and specificity. To extract these features CT-scans are processed in their native dimensionality. We experimentally observe that the 3D-rotational invariance of the proposed features improves the clustering of the feature vectors extracted from normal liver tissue samples.
This work was partially supported by NSF DMS 0915242 award.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdel-massieh, N.H., Hadhoud, M.M., Amin, K.M.: Automatic liver tumor segmentation from ct scans with knowledge-based constraints. In: 5th Cairo International Biomedical Engineering Conference, pp. 215–218. IEEE (December 2010)
Chen, T., Metaxas, D.: A hybrid framework for 3D medical image segmentation. Journal of Medical Image Analysis 9, 547–565 (2005)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics SMC-3(6), 610–621 (1973)
Jain, S., Papadakis, M., Upadhyay, S., Azencott, R.: Rigid-motion-invariant classification of 3-D textures. IEEE Transactions on Image Processing 21(5), 2449 (2012)
Jolly, M.P., Grady, L.: 3D general lesion segmentation in CT. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE (2008)
Kashyap, R.L., Chellappa, R.: Estimation and choice of neighbors in spatial-interaction models of images. IEEE Trans. Information Theory 1, 60–72 (1983)
Liu, J., Hu, Q., Chen, Z., Heng, P.: Adaptive liver segmentation from multi-slice CT scans. In: Peng, Y., Weng, X., Magjarevic, R. (eds.) 7th Asian-Pacific Conference on Medical and Biological Engineering. IFMBE Proceedings, vol. 19, pp. 381–384. Springer, Heidelberg (2008)
Massoptier, L., Casciaro, S.: A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans, vol. 18, pp. 1658–1665. Springer, Heidelberg (2008)
Militzer, A., Hager, T., Jäger, F., Tietjen, C., Hornegger, J.: Automatic detection and segmentation of focal liver lesions in contrast enhanced CT images. In: 20th International Conference on Pattern Recognition, pp. 2524–2527 (August 2010)
Park, S.-J., Seo, K.-S., Park, J.-A.: Automatic Hepatic Tumor Segmentation Using Statistical Optimal Threshold. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 934–940. Springer, Heidelberg (2005)
Pescia, D., Paragios, N., Chemouny, S.: Automatic detection of liver tumors. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 672–675 (2008)
Pham, M., Susomboon, R., Disney, T., Raicu, D., Furst, J.: A comparison of texture models for automatic liver segmentation. In: Pluim, J.P.W., Reinhardt, J.M. (eds.) Proc. Medical Imaging 2007: Image Processing of SPIE, vol. 6512 (2007)
Ranguelova, E.B.: Segmentation of textured images on three-dimensional lattices. PhD Thesis, University of Dublin, Trinity College (2002)
Seo, K.S.: Automatic Hepatic Tumor Segmentation Using Composite Hypotheses. In: Kamel, M.S., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 922–929. Springer, Heidelberg (2005)
Susomboon, R., Raicu, D., Furst, J., Johnson, T.B.: A co-occurrence texture semi-invariance to direction, distance and patient size. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Proc. Medical Imaging 2008: Image Processing, vol. 6914. SPIE (2008)
Upadhyay, S., Jain, S., Papadakis, M., Azencott, R.: 3D-rigid motion invariant discrimination and classification of 3D-textures. In: Papadakis, M., Van De Ville, D., Goyal, V. (eds.) Proc. Wavelets and Sparsity XIV, Proceedings SPIE, vol. 8138, p. 813821 (2011), http://dx.doi.org/10.1117/12.891721
Zhou, J., Xiong, W., Tian, Q., Qi, Y., Liu, J., Leow, W.K., Han, T., Venkatesh, S.K., Wang, S.C.: Semi-automatic segmentation of 3d liver tumors from CT scans using voxel classification and propagational learning. In: MIDAS (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Upadhyay, S., Papadakis, M., Jain, S., Gladish M.D., G., Kakadiaris, I.A., Azencott, R. (2012). Semi-automatic Discrimination of Normal Tissue and Liver Cancer Lesions in Contrast Enhanced X-Ray CT-Scans. In: Yoshida, H., Hawkes, D., Vannier, M.W. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2012. Lecture Notes in Computer Science, vol 7601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33612-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-33612-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33611-9
Online ISBN: 978-3-642-33612-6
eBook Packages: Computer ScienceComputer Science (R0)