
HAL Id: lirmm-00748621
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00748621

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Uncertain Data Integration System
Naser Ayat, Hamideh Afsarmanesh, Reza Akbarinia, Patrick Valduriez

To cite this version:
Naser Ayat, Hamideh Afsarmanesh, Reza Akbarinia, Patrick Valduriez. An Uncertain Data Integra-
tion System. ODBASE’2012: 11th International Conference on Ontologies, DataBases, and Applica-
tions of Semantics, Sep 2012, Roma, Italy. pp.18. �lirmm-00748621�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00748621
https://hal.archives-ouvertes.fr

An Uncertain Data Integration System

Naser Ayat#1, Hamideh Afsarmanesh#2, Reza Akbarinia∗3, Patrick Valduriez∗4

#Informatics Institute, University of Amsterdam, Amsterdam, Netherlands
1s.n.ayat@uva.nl, 2h.afsarmanesh@uva.nl
∗INRIA and LIRMM, Montpellier, France

3,4{Firstname.Lastname@inria.fr}

Abstract. Data integration systems offer uniform access to a set of au-
tonomous and heterogeneous data sources. An important task in setting
up a data integration system is to match the attributes of the source
schemas. In this paper, we propose a data integration system which uses
the knowledge implied within functional dependencies for matching the
source schemas. We build our system on a probabilistic data model to
capture the uncertainty arising during the matching process. Our perfor-
mance validation confirms the importance of functional dependencies and
also using a probabilistic data model in improving the quality of schema
matching. Our experimental results show significant performance gain
compared to the baseline approaches. They also show that our system
scales well.

Keywords: data integration, schema matching, uncertain data integra-
tion, functional dependency

1 Introduction

The ultimate goal of data integration systems is to provide a uniform query
interface to multiple heterogeneous and autonomous data sources. Sources may
reside within an enterprise or on the web, and their numbers can range from tens
to thousands. The main building blocks of a typical data integration application
are mediated schema definition, schema matching and schema mapping.

The mediated schema is the schema on which users pose queries. Schema
matching is the process of finding associations between the elements (often at-
tributes or relations) of different schemas, e.g. a source schema and the medi-
ated schema in the popular Local As View (LAV) approach [1]. Schema mapping
(also referred to as semantic mapping) is the process of relating the attributes
of source schemas to the mediated schema (sometimes using expressions in a
mapping language). The output of schema matching is used as input to schema
mapping algorithms [1].

Despite recent developments, setting up a full data integration system with
a manually designed mediated schema requires significant human effort (e.g. do-
main experts and database designers). On the other hand, there are many appli-
cation contexts, e.g. web, scientific data management, and personal information

management, which do not require full integration to provide useful services [2].
These applications need to start with a data integration application in a com-
plete automatic setting for reducing human effort and development time and to
put more effort later on as needed to improving it. This setting is referred to by
pay-as-you-go data integration.

The goal of our research is to study how advanced of a starting point we
can build a pay-as-you-go data integration system in a fully automated setting.
For building such a system, we take advantage of the background knowledge
which is implied in the functional dependencies (FDs) defined on the schemas.
Since probabilistic data models have shown to be promising [3–5], we build our
approach on a probabilistic data model to capture the uncertainty which arises
during the schema matching process. Therefore, we generate a set of Proba-
bilistic Mediated Schemas (PMSs). The idea behind PMSs is to have several
mediated schemas, each one with a probability that indicates the closeness of
the corresponding mediated schema to the ideal mediated schema.

In the database literature, the closest related work to ours is that of Sarma
et al. [4] which based on PMSs proposed UDI (Uncertain Data Integration),
an uncertain data integration system. However, UDI may fail to capture some
important attribute correlations, and thereby produce low quality answers. Let
us clarify this by an example which is the same as the running example in [4].

Example 1 Consider the following schemas both describing people:
S1(name, hPhone, hAddr, oPhone, oAddr)
S2(name, phone, address)
In S2, the attribute phone can either be a home phone number or an office
phone number, and the attribute address can either be a home address or an
office address.

A high quality data integration system should capture the correlation be-
tween hPhone and hAddr and also between oPhone and oAddr. Specifically, it
must generate schemas which group the address and hAddr together if phone
and hPhone are grouped together. Similarly it should group the address and
oAddr together if phone and oPhone are grouped together. In other words either
of the following schemas should be generated (we abbreviate hPbone, oPhone,
hAddr, oAddr as hP, oP, hA, and oA respectively):

M1({name, name}, {phone, hP}, {oP}, {address, hA}, {oA})
M2({name, name}, {phone, oP}, {hP}, {address, oA}, {hA})

UDI does not consider attribute correlations. Thus, although M1 and M2 may
be generated by UDI, they are overwhelmed by schemas in which the attribute
correlations are not respected. As a results, by producing a large number of
schemas which can easily be exponential, the desirable schemas get a very low
probability.

Most attribute correlations are expressed within FDs. For example let F1

and F2 be the set of FDs of S1 and S2 respectively:
F1 = {hPhone→ hAddr, oPhone→ oAddr}
F2 = {phone→ address}

FDs in F1 and F2 show the correlation between the attributes in S1 and S2,
respectively. For example, hPhone → hAddr indicates that the two attributes
hPhone and hAddr are correlated. Considering the pairs of FDs from different
sources can help us extracting these correlations and achieving the goal of gener-
ating mediated schemas that represent these correlations. For example, the FD
pair phone → address and hPhone → hAddr indicates that if we group phone
and hPhone together, we should also group address and hAddr together, as well
as oPhone and oAddr.

The specific contributions of this paper are the following.

• We propose a data integration system that takes into account attribute corre-
lations by using functional dependencies, and captures uncertainty in medi-
ated schemas using a probabilistic data model. Our system allows integrating
a given set of data sources, as well as incrementally integrating additional
sources, without needing to restart the process from scratch.
• We model the schema matching problem as a clustering problem with con-

straints. This allows us to generate mediated schemas using algorithms de-
signed for the latter problem. In our approach, we build a custom distance
function for representing the knowledge of attribute semantics which we ex-
tract from FDs.
• To validate our approach, we implemented it as well as baseline solutions.

The performance evaluation results show significant performance gains of
our approach in terms of recall and precision compared to the baseline ap-
proaches. They confirm the importance of FDs in improving the quality of
uncertain mediated schemas.

The paper is organized as follows. In Section 2, we make our assumptions
precise and define the problem. In Section 3, we briefly describe the architecture
of our system. In Section 4, we propose our approach for schema matching. We
also analyze the execution cost of our proposed approach. Section 5 describes
our performance validation. Section 6 discusses related work, and Section 7 con-
cludes.

2 Preliminaries

In this section, we first make precise our assumptions and give some background
about PMSs. Then, we define the problem we address in this paper.

We assume that the functional dependencies between the attributes of sources
are available. This is a reasonable assumption in the applications which we con-
sider, in particular scientific applications, because the data source providers are
willing to provide the full database design information, including functional de-
pendencies. However, there are contexts such as the web in which functional
dependencies are not available. For these applications, we can use one of the ex-
isting solutions, e.g. [6, 7] to derive functional dependencies from data. Another
assumption, which we make for ease of presentation, is that the data model is
relational.

Let us formally define some basic concepts, e.g. functional dependencies and
mediated schemas, and then state the problem addressed in this paper. Let S be
a set of source schemas, say S = {S1, . . . , Sn}, where for each Si, i ∈ [1, n], Si =
{ai,1, . . . , ai,li}, such that ai,1, . . . , ai,li are the attributes of Si. We denote the
set of attributes in Si by att(Si), and the set of all source attributes as A. That is
A = ∪iatt(Si). For simplicity, we assume that Si contains a single table. Let F be
the set of functional dependencies of all source schemas, say F = {F1, . . . , Fn}.
For each Si, i ∈ [1, n], let Fi be the set of functional dependencies among the
attributes of Si, i.e. att(Si), where each fdj , fdj ∈ Fi is of the form Lj → Rj

and Lj ⊆ att(Si), Rj ⊆ att(Si). In every Fi, there is one fd of the form Lp → Rp,
where Rp = att(Si), i.e. Lp is the primary key of Si.

We assume one-to-one mappings of source attributes, meaning that each
attribute can be matched with at most one attribute. We do this for simplicity
and also because this kind of mapping is more common in practice. For a set of
sources S, we denote by M = {A1, . . . , Am} a mediated schema, where Ai ⊆ A,
and for each i, j ∈ [1,m], i 6= j ⇒ Ai ∩ Aj = ∅. Each attribute involved in Ai is
called a mediated attribute. Every mediated attribute ideally consists of source
attributes with the same semantics.

Let us formally define the concept of probabilistic mediated schema (PMS). A
PMS for a set S of source schemas is the setN = {(M1, P (M1)), . . . , (Mk, P (Mk))}
where Mi, i ∈ [1, k], is a mediated schema, and P (Mi) is its probability. For each
i, j ∈ [1, k], i 6= j ⇒Mi 6= Mj ,i.e. Mi and Mj are different clusterings of att(S);

and
∑k

i=1 P (Mi) ≤ 1.
We use the precision, recall, and F-measure of the clustering for measuring

the quality of the generated mediated schemas.
Now, we formally define the problem we address. Suppose we are given a set of

source schemas S, and a set of functional dependencies F and a positive integer
number k as input. Our problem is to efficiently find a set of k probabilistic
mediated schemas which have the highest F-measure.

3 System Architecture

The architecture of our data integration system, hereafter called IFD (Integra-
tion based on Functional Dependencies), is shown in Figure 1. IFD consists of
two main parts: schema matching (part A) and query processing (part B). The
components of schema matching, which operate during the set-up time of the
system, are as follows:

• Attribute similarity computing: this component computes the attribute name
similarity between every two source attributes.

• FD derivation: this component derives functional dependencies from data,
which is an optional component of the system and is only used in the cases
where functional dependencies are not given to the system.

• Distance assignment: this component uses attribute pairs similarity and func-
tional dependencies for generating the distance function.

• Schema matching: this component uses the distance function for generating
a set of probabilistic mediated schemas.

• Single schema building: this component generates one mediated schema for
the user by using the generated probabilistic mediated schemas.

The components of the query processing part is depicted in Part B of Figure
1. We include these components in the architecture of our system to provide a
complete picture of a data integration system but our focus is on the schema
matching part (part A). The components of part B which operate at query
evaluation time are as follows:

• Query reformulation: This component uses the probabilistic mediated schemas
to reformulate the user query posed against the mediated schema to a set of
queries posed over the data sources.

• Query result aggregation: This component combines the results of reformu-
lated queries and assigns a probability to every tuple in the result, based on
both the probabilities of the mediated schemas and the dependency among
data sources.

.

.

.

.

.

.

.

S1

Sn

Attribute Similarity

Computing

FD

Derivation

Distance

Function

Schema

Matching

Single

Schema

Building

Query

Reformulation

Query Result

Aggregation

Schemas

Schemas

Schemas & FDsDistancesPMSs
Mediated

Schema

Query
Reformulated

Query

Reformulated Query

Results

FDs

Similarity

Part A

Part B

Results

Fig. 1. IFD architecture

4 Schema Matching

In this section, we present the schema matching part of IFD. To match the
schemas automatically, we cluster the source attributes by putting semantically
equivalent attributes in the same cluster. We use a clustering algorithm that
works based on a distance function, which determines the distance between ev-
ery two attributes. Specifically we use the single-link CAHC (Constrained Ag-
glomerative Hierarchical Clustering) algorithm [8]. In the rest of this section, we
first describe our distance function. Then, we describe our approach for schema
matching. We then describe a useful feature of our approach. We also analyze
the execution cost of the proposed algorithms. Finally, We briefly describe how
the result of schema matching is used to generate the schema mappings.

4.1 Distance Function

Our schema matching algorithm uses a distance function for determining the dis-
tance between source attributes. To assign the distances between the attributes,
we use the attributes’ name similarity as well as some heuristics we introduce
about FDs. In the rest of this section, we first describe our heuristics and then
present the distance function algorithm.

FD Heuristics We use heuristic rules related to FDs in order to assign the
distance of attributes. Before describing our heuristics, let us first define Match
and Unmatch concepts. Consider a1 and a2 as two typical attributes. If we want
to increase their chance of being put in the same cluster, we set their distance
to MD (i.e. Match Distance) which is 0 or a number very close to 0. In this
case, we say that we matched a1 with a2, and we show this by Match(a1, a2).
In contrast, if we want to decrease their chance of being put in the same cluster,
then we set their distance to UMD (i.e. Un-Match Distance) which is 1 or a
number very close to 1. In this case, we say that we unmatched a1 and a2 and
we show this by Unmatch(a1, a2). Now, Let us use the following example to
illustrate the heuristics.

Example 2 Consider two source schemas, both describing bibliographical in-
formation of scientific papers. In this example, primary keys are underlined; F1

and F2 are the sets of FDs of S1 and S2 respectively:
S1(author, title, year, institution, journal, issn)
S2(name, paper title, date, affiliation, journal, serial no, volume, issue)
F1 = {author → institution, journal→ issn}
F2 = {name→ affiliation, journal→ serial no}

Heuristic 1 Let Sp and Sq, p 6= q, be two source schemas. Then,

Match(ap,i, aq,k)⇒ unmatch(ap,i, aq,l) ∧ unmatch(aq,k, ap,j)

where ap,i ∈ att(Sp), ap,j ∈ att(Sp) \ {ap,i}, aq,k ∈ att(Sq), aq,l ∈ att(Sq) \ {aq,k}.

Intuitively, this heuristic means that each attribute can be matched with at
most one attribute of the other source.

Heuristic 2 Let fdp : ap,i → ap,j and fdq : aq,k → aq,l be two FDs, where
fdp ∈ Fp, fdq ∈ Fq, p 6= q. Then, similarity(ap,i, aq,k) > tL ⇒Match(ap,j , aq,l)
where tL is a certain threshold and similarity is a given similarity function.

In this heuristic, We consider the set of facts that the two sources are assumed
to be from the same domain, and both attributes ap,j and aq,l are function-
ally determined by the attributes ap,i, and aq,k respectively, which themselves
have close name similarity. Thus, we heuristically agree that: the probability of
Match(ap,j , aq,l) is higher than that of Match(ap,j , aq,s) and Match(aq,l, ap,r),
where aq,s ∈ att(Sq) \ {aq,l} and ap,r ∈ Sp \ {ap,j}. Therefore, in such a case we
match ap,j with aq,l to reflect this fact. Note that this heuristic has a general
form in which there are more than one attribute on the sides of the FDs (see
Section 4.1).

Let us apply heuristic 2 on Example 2. We have the FD journal→ issn from
S1, and journal → serial no from S2. There is only one attribute at the left
side of these FDs, and their name similarity is equal to 1 that is the maximum
similarity value. Thus, we match the issn with the serial no which appear on
the right side of these FDs. Notice that approaches which only rely on name
similarity, probably match issn with issue, which is a wrong decision.

Heuristic 3 Let PKp and PKq, p 6= q, be the primary keys of Sp and Sq re-
spectively. Then,

(∃ap,i ∈ PKp,aq,j ∈ PKq | (ap,i, aq,j) = arg max
ap∈PKp,aq∈PKq

similarity(ap, aq))∧

(similarity(ap,i, aq,j) > tPK)⇒Match(ap,i, aq,j)

where tPK is a certain threshold and similarity is a given similarity function.

Let us explain the idea behind heuristic 3. Since we assume sources are from
the same domain, there are a number of specific attributes which can be part of
the primary key. Although these attributes may have different names in different
sources, it is reasonable to expect that some of these attributes from different
sources can be matched together. Obviously, we can set tPK to a value less than
the value we set for tL because typically the probability of finding matching
attributes in the primary key attributes is higher than the other attributes.
After matching ap,i with aq,j , we remove them from PKp and PKq respectively,
and continue this process until the similarity of the pair with the maximum
similarity is less than the threshold tPK or one of the PKp or PKq has no more
attributes to match.

Coming back to Example 2, it is reasonable to match the attributes: author,
title, and year of S1 with name, paper title, and date of S2 rather than with
other attributes of S2, and vice versa. The attribute pair with the maximum
similarity is (title, paper title). If we choose a good threshold, we can match

these attributes together. The similarity of other attribute pairs is not high
enough to pass the wisely selected threshold values.

Heuristic 4 Let PKp and PKq, p 6= q, be the primary keys of Sp and Sq re-
spectively. Then,

(∃ap,i ∈ PKp, aq,j ∈ PKq, fdp ∈ Fp, fdq ∈ Fq |
fdp : ap,i → Rp, fdq : aq,j → Rq)⇒Match(ap,i, aq,j) (1)

Heuristic 5 (RHS(1) ∧Rp = {ap,r} ∧Rq = {aq,s})⇒Match(ap,r, aq,s)

Heuristic 4 is applicable when we have two attributes in two primary keys
which each of them is the single attribute appearing at the left side of a FD.
In this case, we match these attributes with each other. We also match the at-
tributes on the right sides of the two FDs if there is only one attribute appearing
at the right side of them (heuristic 5).

Using heuristic 4 for Example 2, we match author with name which is a
right decision. We do this because of the two FDs: author → institution and
name→ affiliation. We also match institution with affiliation which are the
only attributes appearing at the right side of these FDs based on heuristic 5.

Heuristic 6 Let PKp and PKq, p 6= q, be the primary keys of Sp and Sq re-
spectively. Then,

(∀ap,r ∈ PKp \ {ap,i},∃aq,s ∈ PKq \ {aq,j} |Match(ap,r, aq,s))∧
(|PKp| = |PKq|)⇒Math(ap,i, aq,j)

Heuristic 6 is applicable when all attributes of PKp and PKq have been
matched, and only one attribute is left in each of them. In such case we match
these two attributes with each other hoping that they are semantically the same.
Coming back to Example 2, there is only one attribute left in each of the primary
keys that we have not yet matched (i.e. year, date) that we can match using
this heuristic.

Distance Function Algorithm Algorithm 1 describes how we combine the
attributes’ name similarity and FD heuristics to build the distance function.
Steps 2-10 of the algorithm apply heuristic 2. They look for FD pairs from
different sources which their left sides match together and then try to match
attribute pairs on the right sides of these FDs. After finding such FDs, steps
5-10 repeatedly find the attribute pairs (ap, aq) whose similarity is maximum.
If the similarity of ap and aq is more than threshold tR, their distance is set
to MD (Match Distance), and the distances between each of them and any
other source-mates are set to UMD (Unmatch Distance). The algorithm uses
the DoMatch procedure for matching and unmatching attributes. It gets the
attributes which should be matched as parameter, matches them, and unmatches
every one of them with the other ones’ source-mates. Generally, whenever the

Algorithm 1 Distance Function

Require: 1) Source schemas S1, . . . , Sn; 2) The sets of FDs F1, . . . , Fn (the FDs related
to PK are omitted); 3) P = {PK1, . . . , PKn} The set of primary keys of all sources.

Output: Distance matrix D[m][m].
1: compute A = {a1, . . . , am} the set of all source attributes
2: for all FD pair fdi ∈ Fk, fdj ∈ Fl, k 6= l do // heuristic 2
3: if IsMatch(Li, Lj) then
4: make local copies of fdi, fdj
5: repeat
6: find the attribute pair ap ∈ Ri, aq ∈ Rj with the maximum similarity s
7: if s > tR then
8: DoMatch(ap, aq)
9: Ri ← Ri \ {ap};Rj ← Rj \ {aq}

10: until s > tR and |Ri| > 0 and |Rj | > 0

11: for all pair PKi, PKj ∈ P , where they are PKs of Si and Sj respectively do
12: make local copies of PKi and PKj

13: for all pair ap ∈ PKi, aq ∈ PKj do
14: if ∃fdk ∈ Fi and fdl ∈ Fj such that Lk = {ap} and Ll = {aq} then
15: DoMatch(ap, aq) // heuristic 4
16: PKi ← PKi \ {ap}; PKj ← PKj \ {aq}
17: if (Rk = {as} and Rl = {at}) then DoMatch(as, at) // heuristic 5

18: repeat
19: find the attribute pair ap ∈ PKi and aq ∈ PKj with maximum similarity s
20: if s > tPK then
21: DoMatch(ap, aq) // heuristic 3
22: PKi = PKi \ {ap}; PKj = PKj \ {aq}
23: until s > tPK and |PKi| > 0 and |PKj | > 0
24: if (PKi = {ap} and PKj = {aq}) then DoMatch(ap, aq) // heuristic 6

25: for all attribute pair ai, aj ∈ A which D[ai][aj] has not been computed yet do
26: if (ai, aj ∈ Sk) then D[ai][aj]← UMD // heuristic 1
27: else D[ai][aj]← similarity(ai, aj)

28: ∀ai, aj , ak ∈ A if (D[ai][ak] = MD and D[ak][aj] = UMD) then D[ai][aj]← UMD
29: ∀ai, aj , ak ∈ A if (D[ai][ak] = MD and D[ak][aj] = MD) then D[ai][aj]← MD
30: ∀ai, aj ∈ AD[ai][aj]← D[aj][ai]

algorithm matches two attributes with each other, it also unmatches the two of
them with the other one’s source-mates because every attribute of a source can
be matched with at most one attribute of every other source. Steps 9 remove
the matched attributes from the list of unmatched attributes.

The IsMatch function, which is used by step 3, takes as parameter the left
sides of two FDs and returns true if they can be matched together, otherwise
it returns false. It first checks whether the input parameters are two sets of the
same size. Then, it finds the attribute pair with maximum name similarity and
treats it as matched pair by removing the attributes from the list of unmatched
attributes if their similarity is more than threshold tL. It repeats the matching
process until there is no more attribute eligible for matching. After the matching

loop is over, the function returns true if all attribute pairs have been matched
together, otherwise it returns false which means the matching process has not
been successful. Notice that we do not reflect the matching of attributes of the
left sides of FDs in the distance matrix. The reason is that for these attributes (in
contrast to those on the right side), the matching is done just based on attribute
name similarity and not the knowledge in FDs.

Please notice that we use three different similarity thresholds (i.e. tL, tR,
and tPK) to have more flexibility in the matching. However, we need to set
them carefully. If we set them to high values, we prevent wrong matching but
may miss some pairs that should have been matched. On the other hand, if we
set thresholds to low values, we increase the number of correctly matched pairs
but also increase the number of wrongly matched pairs. In other words, setting
the threshold values is a trade off between precision and recall. Aside from this,
the inequality between them is important as we explain below. We know that tL
is the similarity threshold for matching attributes at the left sides of FDs. Since
the matching of left sides of FDs is taken as evidence for matching the right sides
of them, tL needs to be chosen carefully. Setting it to low values, results in wrong
matchings. On the other hand, we use tR as similarity threshold for matching
attributes on the right sides of FDs. Since we already have evidence for matching
them, we can be more relaxed in setting tR by setting it to values lower than tL.
The same argument goes for the value of tPK . tPK is the similarity threshold for
matching PK attributes. Since these attributes are a subset of source attributes,
it is reasonable to set tPK to lower values than tL and tR.

In steps 11-24, we apply heuristics 3,4, 5 and 6. Steps 13-17 check every
attribute pair of two PKs to see if they are the only attributes at the left sides of
two FDs. If yes, then these attributes are matched together. Steps 18-23 find the
attribute pair with the maximum name similarity and if it is more than threshold
tPK , the attributes are matched together. The matching process continues until
there is at least one attribute in every PK and the similarity of the attribute
pair with the maximum similarity is more than threshold tPK . If each of the
two PKs has only one attribute left, step 24 matches them together based on
heuristic 6.

In steps 25-27, we set the distances of attribute pairs which have not been set
yet. Step 26 applies heuristic1 by setting the distance of the attributes from the
same source to UMD. The distance of other attribute pairs is set to their name
similarity. Steps 28-29 perform a transitive closure over the match and unmatch
constraints. Step 30 deals with the symmetric property of the distance function
to ensure that the returned distance is independent from the order of attributes.

The matching and unmatching decisions made by a distance function should
be consistent with each other. More precisely, a consistent distance function
should not satisfy the following condition:

∃ai, aj , ak ∈ A | match(ai, aj) ∧match(aj , ak) ∧ unmatch(ai, ak). (2)

The following proposition shows that our distance function is consistent.

Proposition 1. Algorithm 1 returns a consistent distance function.

Proof. We first show that if inconsistency exists, it is removed by step 32 of
the algorithm, i.e. the first transitive closure rule. Then, we show that order
of applying the transitive closure rules in Algorithm 1 is the only correct or-
der. Let us prove the first part. Suppose steps 1-31 of the algorithm create an
inconsistency so that condition (2) satisfies. Then, as the result of step 32 of
the algorithm, either match(ai, aj) changes to unmatch(ai, aj) or match(aj , ak)
changes to unmatch(aj , ak). It is clear that the inconsistency between ai, aj ,
and ak is removed with either of the changes. Without the loss of generality,
we assume that match(ai, aj) changes to unmatch(ai, aj). Then, if there exists
al ∈ A, so that condition (2) satisfies for ai, aj , and al as a result of the change,
step 32 removes it too. Thus, step 32 removes all of the inconsistencies in the
cost of losing possibly correct match pairs.

Let us prove the second part. Suppose that steps 1-31 of the algorithm cre-
ate an inconsistency so that condition (2) satisfies and we change the order
of transitive closure rules. By first applying rule 2, unmatch(ai, ak) changes to
match(ai, ak). However, we already unmatched ai with ak as the result of match-
ing ai with one of the source-mates of ak, say al. Thus, we have: match(ak, ai)
andmatch(ai, al), which results inmatch(ak, al) by applying rule 2 to them. This
means that we matched two attributes ak and al from the same source. Thus,
changing the order of transitive closure rules does not remove the inconsistency
but propagates it.

4.2 Schema Matching Algorithm

We now describe the schema matching algorithm which works based on the
CAHC clustering method. This algorithm takes as input the source schemas,
distance function which is computed using Algorithm 1, and the needed number
of mediated schemas (k) which is specified by the user, and returns a set of
probabilistic mediated schemas to the user. The algorithm stores all created
mediated schemas in the set M, which is initialized to ∅. The schema matching
algorithm works as follows:

1. Put each attribute of the source schemas in one cluster, and add the gener-
ated mediated schema to the set M.

2. Find the two clusters with the minimum distance while the distance be-
tween two clusters is defined as follows: if the clusters have two attributes
from the same source, the distance between them is infinity; otherwise the
minimum distance between two attributes, each from one of the two clusters,
is regarded as the distance between the two clusters.

3. If the minimum distance, found in 2, is not equal to infinity, then merge
these clusters; add the newly created mediated schema to M; and go to 2.
Otherwise, go to 4.

4. For each mediated schema in M, compute FD-point as the number of match
decisions that are respected by the mediated schema. Notice that by match
decision, we mean the attribute pair whose returned distance by the distance
function is MD.

5. If |M | > k, then select k mediated schemas of M with the highest FD-
point; assign probability FDpointi∑k

i=1 FDpoint
to each selected mediated schema; and

return them. Otherwise, assign probability 1
|M | to each mediated schema in

M, and return them. Notice that in case of ties, we randomly select mediated
schemas.

4.3 Adding Data Sources Incrementally

IFD starts with a given set of sources and ends up generating several mediated
schemas from these sources. A useful property of IFD is that it allows new
sources to be added to the system on the fly. Let Sn+1 be the source which we
want to add. By comparing Sn+1 with each Si, i ∈ [1..n], we can compute the
distance between every attribute of Sn+1 and every attribute of Si in the same
way that we did for computing the distances between the attributes of S1..Sn.
After computing the distances, we consider every PMS, say Mj , j ∈ [1..k] and
for every attribute ap ∈ Sn+1, we find the closest attribute aq ∈ A and put ap
in the same cluster as that of aq. We repeat this process for every PMS.

This is a useful property of IFD which is needed in the contexts which we
do not have all sources at hand when we start setting up the data integration
application and we need to add them incrementally when they become available.

4.4 Execution Cost Analysis

In this section, we study the execution costs of our schema matching and distance
function algorithms.

Theorem 1. Let m be the number of the attributes of all sources, then the
running time of Algorithm 1 and the schema matching algorithm together is
θ(m3).

Proof. The basis for our schema matching algorithm is the single-link CAHC
(Constrained Agglomerative Hierarchical Clustering) algorithm in which the
number of clusters is determined by the arity of the source with the maximum
arity. Let m be the number of the attributes of all sources. The time complex-
ity of the single-link AHC algorithm implemented using next-best-merge array
(NBM) is Θ(m2) [9].

Let us now analyze the running time of the distance function algorithm.
Most of the algorithm is devoted to matching left and right sides of FDs, or the
attributes of PKs. Let c be the arity of the source with the maximum arity, and
f the maximum number of FDs that a source may have, which is a constant. The
number of attributes on the left and right side of a FD is at most equal to the
arity of its source, so its upper bound is c. Thus, matching both sides of two FDs
takes Θ(c2) time which is equal to Θ(1) because c is a constant. This argument
also holds for matching PKs’ attributes because the algorithm only checks the
FDs of the two sources (which each one at most has f FDs), not the FDs of all
sources.

Let n be the number of sources, then we have at most f × n FDs. The

algorithm checks every FD pair for matching. Thus, it takes f×n×(f×n−1)
2 ×Θ(1)

time for matching FDs which is equal to (n2×f2). By taking f, i.e. the maximum
number of FDs, as a constant, the complexity is Θ(n2). In the same way, the
time complexity for matching PKs is Θ(n2).

The transitive closure part of the algorithm is done in θ(m3) time, where m
is the total number of attributes. The last part of the algorithm that guarantees
symmetric property takes θ(m3). Since the number of attributes is at least the
number of sources, we have m ≥ n. Thus, the transitive closure of attributes
dominates all other parts of the algorithm and the running time of the algorithm
is θ(m3). As a result, the running time of the schema matching and the distance
function algorithms together is θ(m3).

4.5 Schema Mapping

The result of schema matching is fed to the schema mapping algorithm for gen-
erating the mappings which are used in query processing. In our data integration
solution, we assume that every attribute in the data sources can be matched with
at most one attribute in other data sources which means we only consider one-to-
one mappings. We do this for simplicity and also because this kind of mapping
is more common in practice. We also assume single-table data sources. These
two assumptions greatly simplify the schema mapping algorithm. For generat-
ing the mappings, we can rely on PMSs which implicitly contain the mappings
for answering user queries. We do not provide the details of the schema mapping
algorithm here due to its simplicity and also lack of space.

5 Experiments

We now present our experimental results. The main goal of our experiments is to
show the effect of using functional dependencies on the quality of generated me-
diated schemas. To examine the contribution of using a probabilistic approach,
we compare our approach with two traditional baseline approaches that do not
use probabilistic techniques, i.e. they generate only one single deterministic me-
diated schema. We also compare our system with the one presented in [4] which
is the closest to ours.

We implemented IFD in Java, and we used Weka 3-7-3 classes for imple-
menting the hierarchical clustering component. We used the SecondString tool1

to compute the Jaro Winkler similarity [10] of attribute names in pair-wise at-
tribute comparison. We conducted our experiments on a Windows XP machine
with Intel core 2 GHz CPU and 2GB memory.

The parameters we used in our experiments are listed in Table 1. We set the
number of reuired mediated schemas (denoted as k) to 1000, which is relatively
high, in order to return all eligible mediated schemas. Our experiments showed
similar results when we varied k considerably (e.g. k = 5).

1 Secondstring. http://secondstring.sourceforge.net/

Table 1. Parameters

Parameter Values

k: the number of required mediated schemas 1000
tPK : similarity threshold for PK attributes 0.7
tL: similarity threshold for attributes on the left side of FDs 0.9
tR: similarity threshold for attributes on the right side of FDs 0.8
MD: match distance 0
UMD: unmatch distance 1

For evaluating our system, we used a dataset which we designed manually.
This dataset2 consists of 17 single-table schemas in the university domain. For
having variety in attribute names, we used Google Search with ”computer sci-
ence” and ”course schedule” keywords and picked up the first 17 related results.
For every selected webpage, we designed a single-table schema which could be
the data source of the course schedule information on that webpage and we used
data labels as attribute names of the schema. Also, we created primary key and
functional dependencies for every schema using our knowledge of the domain.

We tested the generated mediated schemas against the ideal mediated schema,
which we created manually, to measure their quality.

We tested the generated mediated schemas against the ideal mediated schema,
which we created manually, to measure their quality. Since each mediated schema
corresponds to a clustering of source attributes, we measured its quality by com-
puting the precision, recall, and F-measure of the clustering. Let TP (True Pos-
itive) be the number of attribute pairs that are clustered correctly, FP (False
Positive) be the number of attribute pairs that are clustered wrongly, and FN
(False Negative) be the number of attribute pairs which are clustered together in
the manually created schema but such pairs do not exist in the aforementioned
schema. The three metrics are defined as follows: Precision: P = TP

TP+FP ; Recall:

R = TP
TP+FN ; F-measure: F = 2×P×R

P+R . We computed the metrics for each indi-
vidual mediated schema, and summed the results weighted by their respective
probabilities.

As far as the authors know, the most competing approach to ours (IFD) is
that of Sarma et al. [4] which we denote by UDI as they did. Thus, we compare
our solution with UDI as the most competing probabilistic approach. We im-
plemented UDI in Java. We used the same tool in our approach for computing
pair-wise attribute similarity as in UDI. Also, we set the parameters edge-weight
threshold and error bar to 0.85 and 0.02 respectively. Since the time complexity
of UDI approach is exponential to the number of uncertain edges, we selected
the above values carefully to let it run.

2 The dataset is available at http://www.science.uva.nl/CO-IM/papers/IFD/

IFD-test-dataset.zip

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision Recall F-measure

OneSchema UDI IFD MaxFD WFD

Fig. 2. Performance comparison of IFD with competing approaches

We considered two baseline approaches that create a single mediated schema,
to evaluate the performance gain of using a probabilistic technique. These ap-
proaches are as follows:

• MaxFD: creates a deterministic mediated schema as follows. In the schema
matching algorithm in section 4.2, we count the number of FD recommenda-
tions and obtain the maximum possible FD-point, then we stop at the first
schema which gets this maximum point.

• OneSchema: creates a deterministic mediated schema based on Algorithm
4.1 in [4]. We set frequency threshold to 0 and the edge weight threshold to
0.85.

Moreover, to examine the contribution of using functional dependencies in
the quality of generated mediated schemas, we considered Algorithm 2 without
taking advantage of the FD recommendations (WFD) and compared it to our
approach.

In our first experiment, we compare the quality of mediated schemas gener-
ated by our approach (IFD) with the ones generated by UDI and other compet-
ing approaches. Figure 2 compares the results measuring precision, recall, and
F-measure of IFD, UDI, OneSchema, MaxFD, and WFD. As this Figure shows,
IFD obtains better results than UDI. IFD improves precision by 23%, recall by
22%, and F-measure by 23%.

This Figure also shows the contribution of using FD recommendations in the
quality of the results. WFD (Without FD) shows the results of our approach
without using FD recommendations. It is obvious that using these recommen-
dations has considerable effect on the results.

Moreover, Figure 2 shows the performance gain of using a probabilistic ap-
proach rather than a single deterministic schema approach. MaxFD applies all
of the FD recommendations to obtain the mediated schema with the maximum
FD-point, then stops and returns the resulted mediated schema. On the other
hand, IFD does not stop after applying all FD recommendations but since there
is no further FD recommendation, it starts merging clusters based on the sim-
ilarity of their attribute pairs. This increases recall considerably, but reduces
precision a little because some pairs are clustered wrongly. Overall, IFD im-
proves F-measure by 8% compared to MaxFD. On the other hand, this Figure
shows that UDI does not get such performance gain compared to OneSchema

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 100 200 300 400 500 600 700

F
-m

e
a
su
re

FD-point

Fig. 3. F-measure vs. FD-point

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
e

tu
p

 T
im

e
 (

S
e

c)

Number of Sources

UDI

IFD

Fig. 4. Execution time of IFD and UDI

which creates a single deterministic schema. This happens because UDI cannot
select the high quality schemas among the generated schemas.

In the second experiment, we study the effect of using FDs on the quality
of generated mediated schemas. Figure 3 shows how F-measure increases with
increasing FD-point up to 680 which is the maximum possible value in the tested
dataset. The starting point is when we have one cluster for every attribute. We
have not used any recommendation at this point yet; as a result, FD-point=0.
Also it is clear that precision = 1 and recall = 0, thus F-measure=0. As we
begin merging clusters using recommendations, FD-point increases and this in-
creases the F-measure as well. The increase in FD-point continues until it reaches
its maximum possible value in the tested dataset. We consider all generated me-
diated schemas with maximum FD-point value as schemas eligible for being in
the result set.

In our final experiment, we measure the effect of the number of sources (n)
on IFD’s execution time. By execution time, we mean the setup time needed to
integrate n data sources. For IFD, the execution time equals to the execution
time of computing distances using Algorithm 1 plus the execution time of gener-
ating mediated schemas using Algorithm 2. For UDI, we only consider the time
needed to generate mediated schemas to be fair in our comparison. For UDI,
the execution time is the time needed to create the mediated schemas. Figure
4 shows how the execution times of IFD and UDI increase with increasing n
up to 17 (the total number of sources in the tested dataset). The impact of the
number of sources on the execution time of IFD is not as high as that of UDI.
While in the beginning, the execution time of UDI is a little lower than IFD,
it dramatically increases eventually. This is because the execution time of IFD
is cubic to the number of the attributes of sources (see Section 4.4). But, the
execution time of UDI is exponential to the number of uncertain edges. This
shows that IFD is much more scalable than UDI.

6 Related Work

A considerable amount of literature has been published on automatic schema
matching during the last three decades (see [11] for a survey). They studied how
to use various clues to identify the semantics of attributes and match them. An
important class of approaches, which are referred to by constraint matchers, uses

the constraints in schemas to determine the similarity of schema elements. Ex-
amples of such constraints are data types, value ranges, uniqueness, optionality,
relationship types, and cardinalities. For instance, OntoMatch [12], DIKE [13],
and SASMINT [14] use this type of matcher. Our approach is different, since
we use an uncertain approach for modeling and generating mediated schemas.
Thus, the heuristic rules we use as well as the way we decrease the distance of
the attributes is completely different. In addition, we take advantage of FDs.
The proposals in [15] and [16] also consider the role of FDs in schema matching.
However, our heuristic rules and the way we combine it with attribute similarity
is completely different with these proposals. The Similarity Flooding algorithm
(SF) [17] uses a similarity graph to propagate the similarity between attributes.
Our work is different from SF in the way that we do not propagate attribute sim-
ilarity but instead we propagate the matching and unmatching of the attributes.

To the best of our knowledge, the closest work to ours is that of Sarma
et al. [4] which we denote as UDI in this paper. UDI creates several mediated
schemas with probabilities attached to them. To do so, it constructs a weighted
graph of source attributes and distinguishes two types of edges: certain and
uncertain. Then, a mediated schema is created for every subset of uncertain
edges. Our approach has several advantages over UDI. The time complexity of
UDI’s algorithm for generating mediated schemas is exponential to the number
of uncertain edges (i.e. attribute pairs) but that of our algorithm is PTIME
(as shown in Section 4.4), therefore our approach is much more scalable. In
addition, the quality of mediated schemas generated by our approach has shown
to be considerably higher than that of UDI. Furthermore, the mediated schemas
generated by our approach are consistent with all sources, while those of UDI
may be inconsistent with some sources.

7 Conclusion and Future Work

In this paper, we proposed IFD, a data integration system with the objective
of automatically setting up a data integration application. We established an
advanced starting point for pay-as-you-go data integration systems. IFD takes
advantage of the background knowledge implied in FDs for finding attribute
correlations and using it for matching the source schemas and generating the
mediated schema. We built IFD on a probabilistic data model in order to model
the uncertainty in data integration systems.

We validated the performance of IFD through implementation. We showed
that using FDs can significantly improve the quality of schema matching (by
26%). We also showed the considerable contribution of using a probabilistic ap-
proach (10%). Furthermore, we showed that IFD outperforms UDI, its main
competitor, by 23% and has cubic scale up compared to UDI’s exponential exe-
cution cost.

As future work, we plan to incorporate constraints other than PK and FDs
for better specifying the distance between attributes and improve the quality of
generated mediated schemas. Also, using machine learning techniques for getting

the user feedback and improving the semantic integration of the system can be a
possibility of future work. Moreover, we believe that using FDs is very promising
for dealing with multi-table sources since foreign keys which are used for linking
tables in relational model, are modeled using FDs. Extension of our approach to
multi-table sources can be another future work direction.

References

1. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd Edition.
Springer (2011)

2. Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: Proc. of CIDR.
(2007)

3. Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncertainty. VLDB J.
18(2) (2009) 469–500

4. Sarma, A.D., Dong, X., Halevy, A.Y.: Bootstrapping pay-as-you-go data integra-
tion systems. In: Proc. of SIGMOD. (2008)

5. Akbarinia, R., Valduriez, P., Verger, G.: Efficient Evaluation of SUM Queries Over
Probabilistic Data. TKDE to appear (2012)

6. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: Tane: An efficient algorithm
for discovering functional and approximate dependencies. Comput. J. 42(2) (1999)
100–111

7. Wang, D.Z., Dong, X.L., Sarma, A.D., Franklin, M.J., Halevy, A.Y.: Functional
dependency generation and applications in pay-as-you-go data integration systems.
In: Proc. of WebDB. (2009)

8. Davidson, I., Ravi, S.S.: Using instance-level constraints in agglomerative hier-
archical clustering: theoretical and empirical results. Data Min. Knowl. Discov.
18(2) (2009) 257–282

9. Manning, C., Raghavan, P., Schutze, H.: Introduction to information retrieval.
Volume 1. Cambridge University Press Cambridge (2008)

10. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: Proc. of IIWeb. (2003)

11. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4) (2001) 334–350

12. Bhattacharjee, A., Jamil, H.M.: Ontomatch: A monotonically improving schema
matching system for autonomous data integration. In: Proc. of Conference on
Information Reuse & Integration. (2009)

13. Palopoli, L., Terracina, G., Ursino, D.: Dike: a system supporting the semi-
automatic construction of cooperative information systems from heterogeneous
databases. Softw., Pract. Exper. 33(9) (2003) 847–884

14. Unal, O., Afsarmanesh, H.: Semi-automated schema integration with sasmint.
Knowl. Inf. Syst. 23(1) (2010)

15. Biskup, J., Embley, D.W.: Extracting information from heterogeneous information
sources using ontologically specified target views. Inf. Syst. 28(3) (2003) 169–212

16. Larson, J.A., Navathe, S.B., Elmasri, R.: A theory of attribute equivalence in
databases with application to schema integration. IEEE Trans. Software Eng.
15(4) (1989) 449–463

17. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proc. of ICDE.
(2002)

