Abstract
Cloud computing as an outsourced data storage platform is becoming popular by the day with multiple service offerings by companies such as Amazon, Microsoft, among others. However to gain wide- spread enterprise level acceptance, cloud providers still need to address the following significant challenges: (a) Data confidentiality: Organizations do not trust cloud providers with their confidential data. One way of ensuring data confidentiality is of course to store data in encrypted form. This in turn requires that data be decrypted before each access. Further, decryption should be enabled only to authorized users. (b) Transactions: Consistent, concurrent and reliable access to data should be provided via transactions, as with traditional databases. (c) User confidentiality: It should be possible to keep the identity of the users executing transactions confidential from the ‘owners’ of data and vice versa.
In this work, we aim to integrate the above objectives providing transactional guarantees over encrypted outsourced data. More specifically, we propose concurrency control protocols for the different cloud sharing configurations, with different confidentiality requirements. Experimental results are given to validate the scalability of the proposed protocols.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann Publishers (2011)
Kossmann, D., Kraska, T., Loesing, S.: An evaluation of Alternative Architectures for Transaction Processing in the Cloud. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 579–590 (2010)
Levandoski, J., Lomet, D., Mokbel, M., Zhao, K.: Deuteronomy: Transaction Support for Cloud Data. In: Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR), pp. 123–133 (2011)
Williams, P., Sion, R., Shasha, D.: The Blind Stone Tablet: Outsourcing Durability to Untrusted Parties. In: Proceedings of the Network and Distributed System Security Symposium (NDSS) (2009)
Tan, C., Liu, Q., Wu, J.: Secure Locking for Untrusted Clouds. In: Proceedings of the IEEE International Conference on Cloud Computing (CLOUD), pp. 131–138 (2011)
Biswas, D., Haller, S., Kerschbaum, F.: Privacy-Preserving Outsourced Profiling. In: Proceedings of the IEEE International Conference on E-Commerce Technology (CEC), pp. 136–143 (2010)
Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and Anonymous Identity-Based Encryption and Authorised Private Searches on Public Key Encrypted Data. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196–214. Springer, Heidelberg (2009)
Vidyasankar, K.: Serializability. In: Encyclopedia of Database Systems, pp. 2626–2632 (2009)
Vidyasankar, K., Vossen, G.: A Multi-Level Model for Web Service Composition. In: Proceedings of the IEEE International Conference on Web Services (ICWS), pp. 462–469 (2004)
Biswas, D., Vidyasankar, K.: Spheres of Visibility. In: Proceedings of the IEEE European Conference on Web Services (ECOWS), pp. 2–13 (2005)
Ivan, A., Dodis, Y.: Proxy Cryptography Revisited. In: Proceedings of the Network and Distributed System Security Symposium (NDSS) (2003)
Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Biswas, D., Vidyasankar, K. (2012). Privacy Preserving Cloud Transactions. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2012. OTM 2012. Lecture Notes in Computer Science, vol 7566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33615-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-33615-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33614-0
Online ISBN: 978-3-642-33615-7
eBook Packages: Computer ScienceComputer Science (R0)