Abstract
Cloud computing has been dominated by system-level virtual machines to enable the management of resources using a coarse grained approach, largely in a manner independent from the applications running on these infrastructures. However, in such environments, although different types of applications can be running, the resources are often delivered in a equal manner to each one, missing the opportunity to manage the available resources in a more efficient and application aware or driven way.
Our proposal is QoE-JVM supporting Java applications with a global and elastic distributed image of a high-level virtual machine (HLL-VM), where total resource consumption and allocation (within and across applications in the infrastructure) are driven by incremental gains in quality-of-execution (QoE), which relates the resources allocated to an application and the performance the application can extract from having those resources. In this paper, we discuss how critical resources (memory and CPU) can be allocated among HLL-VMs, so that Cloud providers can exchange resource slices among virtual machines, continually addressing where those resources are required, while being able to determine where the reduction will be more economically effective, i.e., will contribute in lesser extent to performance degradation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alpern, B., Augart, S., Blackburn, S.M., Butrico, M., Cocchi, A., Cheng, P., Dolby, J., Fink, S., Grove, D., Hind, M., McKinley, K.S., Mergen, M., Moss, J.E.B., Ngo, T., Sarkar, V.: The Jikes research virtual machine project: building an open-source research community. IBM Syst. J. 44, 399–417 (2005)
Arnold, M., Fink, S.J., Grove, D., Hind, M., Sweeney, P.F.: A survey of adaptive optimization in virtual machines. Proceedings of the IEEE 93(2) (2005), Special Issue on Program Generation, Optimization, ans Adaptation
Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst. Rev. 37, 164–177 (2003)
Binder, W., Hulaas, J., Moret, P., Villazón, A.: Platform-independent profiling in a virtual execution environment. Softw. Pract. Exper. 39, 47–79 (2009)
Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage, D., Wiedermann, B.: The dacapo benchmarks: Java benchmarking development and analysis. In: OOPSLA 2006: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications, pp. 169–190. ACM, New York (2006)
Cobb, C.W., Douglas, P.H.: A theory of production. American Economic Association 1, 139–165 (1928)
Cobb, C.W., Douglas, P.H.: A theory of production. The American Economic Review 18(1), 139–165 (1928)
Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T.: A generic component model for building systems software. ACM Trans. Comput. Syst. 26, 1:1–1:42 (2008)
Czajkowski, G., Wegiel, M., Daynes, L., Palacz, K., Jordan, M., Skinner, G., Bryce, C.: Resource management for clusters of virtual machines. In: Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the Grid, CCGRID 2005, pp. 382–389. IEEE Computer Society, Washington, DC (2005)
Czajkowski, G., Hahn, S., Skinner, G., Soper, P., Bryce, C.: A resource management interface for the Java platform. Softw. Pract. Exper. 35, 123–157 (2005)
Duran-Limon, H.A., Siller, M., Blair, G.S., Lopez, A., Lombera-Landa, J.F.: Using lightweight virtual machines to achieve resource adaptation in middleware. IET Software 5(2), 229–237 (2011)
Geoffray, N., Thomas, G., Muller, G., Parrend, P., Frenot, S., Folliot, B.: I-JVM: a Java Virtual Machine for component isolation in OSGi. In: IEEE/IFIP International Conference on Dependable Systems & Networks (2009)
Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling for cloud systems. In: 2010 International Conference on Network and Service Management (CNSM), pp. 9–16 (October 2010)
Hines, M., Gordon, A., Silva, M., Da Silva, D., Ryu, K.D., Ben-Yehuda, M.: Applications know best: Performance-driven memory overcommit with ginkgo. In: CloudCom 2011: 3rd IEEE International Conference on Cloud Computing Technology and Science (2011)
Janik, A., Zielinski, K.: AAOP-based dynamically reconfigurable monitoring system. Information & Software Technology 52(4r), 380–396 (2010)
Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. ACM Trans. Auton. Adapt. Syst. 4, 14:1–14:42 (2009)
Shao, Z., Jin, H., Li, Y.: Virtual machine resource management for high performance computing applications. In: International Symposium on Parallel and Distributed Processing with Applications, pp. 137–144 (2009)
Sharma, U., Shenoy, P., Sahu, S., Shaikh, A.: A cost-aware elasticity provisioning system for the cloud. In: Proceedings of the 2011 31st International Conference on Distributed Computing Systems, ICDCS 2011, pp. 559–570. IEEE Computer Society, Washington, DC (2011)
Simão, J., Lemos, J., Veiga, L.: A 2 -VM : A Cooperative Java VM with Support for Resource-Awareness and Cluster-Wide Thread Scheduling. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 302–320. Springer, Heidelberg (2011)
Singer, J., Kovoor, G., Brown, G., Luján, M.: Garbage collection auto-tuning for java mapreduce on multi-cores. In: Proceedings of the International Symposium on Memory Management, ISMM 2011, pp. 109–118. ACM, New York (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Simão, J., Veiga, L. (2012). QoE-JVM: An Adaptive and Resource-Aware Java Runtime for Cloud Computing. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2012. OTM 2012. Lecture Notes in Computer Science, vol 7566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33615-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-33615-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33614-0
Online ISBN: 978-3-642-33615-7
eBook Packages: Computer ScienceComputer Science (R0)