Skip to main content

Ontology Learning from Open Linked Data and Web Snippets

  • Conference paper
On the Move to Meaningful Internet Systems: OTM 2012 Workshops (OTM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7567))

Abstract

The Web of Open Linked Data (OLD) is a recommended best practice for exposing, sharing, and connecting pieces of data, information, and knowledge on the Semantic Web using URIs and RDF. Such data can be used as a training source for ontology learning from web textual contents in order to bridge the gap between structured data and the Web. In this paper, we propose a new method of ontology learning that consists in learning linguistic patterns related to OLD entities attributes from web snippets. Our insight is to use the Linked Data as a skeleton for ontology construction and for pattern learning from texts. The contribution resides on learning patterns for relations existing in the Web of Linked Data from Web content. These patterns are used to populate the ontology core schema with new entities and attributes values. The experiments of the proposal have shown promising results in precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)

    Article  Google Scholar 

  2. Marneffe, M.C., Manning, C.D.: The Stanford typed dependencies representation. In: Coling 2008: Proceedings of the workshop on Cross-Framework and Cross-Domain Parser Evaluation (CrossParser 2008), pp. 1–8. Association for Computational Linguistics, Stroudsburg (2008)

    Chapter  Google Scholar 

  3. Sabou, M., Fernandez, M., Motta, E.: Evaluating Semantic Relations by Exploring Ontologies on the Semantic Web. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.) NLDB 2009. LNCS, vol. 5723, pp. 269–280. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Hearst, M.A.: Automatic Acquisition of Hyponyms. Technical Report. University of California at Berkeley, Berkeley, CA, USA (1992)

    Google Scholar 

  5. Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatising the learning of lexical patterns: an application to the enrichment of WordNet by extracting semantic relationships from Wikipedia. Data and Knowledge Engineering 61(3), 484–499 (2007)

    Article  Google Scholar 

  6. Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hypernym discovery. In: Proceedings of NIPS 17 (2005)

    Google Scholar 

  7. Alani, H.: Position paper: ontology construction from online ontologies. In: Proceedings of the 15th International Conference on World Wide Web (WWW 2006). ACM, New York (2006)

    Google Scholar 

  8. Ramakrishnan, C., Mendes, P.N., Wang, S., Sheth, A.P.: Unsupervised Discovery of Compound Entities for Relationship Extraction. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 146–155. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Zouaq, A., Gagnon, M., Ozell, B.: Semantic Analysis using Dependency-based Grammars and Upper-Level Ontologies. International Journal of Computational Linguistics and Applications 1(1-2), 85–101 (2010)

    Google Scholar 

  10. Kim, J., Kim, P., Chung, H.: Ontology construction using online ontologies based on selection, mapping and merging. IJWGS 7(2), 170–189 (2011)

    Article  Google Scholar 

  11. Cimiano, P.: Ontology Learning and Population from Text: algorithm, evaluation and application. Springer (2006)

    Google Scholar 

  12. Maynard, D., Funk, A., Peters, W.: Using Lexico-Syntactic Ontology Design Patterns for ontology creation and population. In: WOP 2009 – ISWC Workshop on Ontology Patterns, Washington (2009)

    Google Scholar 

  13. D’Aquin, M., Kronberger, G., Suárez-Figueroa, M.: Combining Data Mining and Ontology Engineering to enrich Ontologies and Linked Data. In: Workshop: Knowledge Discovery and Data Mining Meets Linked Open Data - Know@LOD at Extended Semantic Web Conference, ESWC (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tiddi, I., Mustapha, N.B., Vanrompay, Y., Aufaure, MA. (2012). Ontology Learning from Open Linked Data and Web Snippets. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds) On the Move to Meaningful Internet Systems: OTM 2012 Workshops. OTM 2012. Lecture Notes in Computer Science, vol 7567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33618-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33618-8_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33617-1

  • Online ISBN: 978-3-642-33618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics