Abstract
The Web of Open Linked Data (OLD) is a recommended best practice for exposing, sharing, and connecting pieces of data, information, and knowledge on the Semantic Web using URIs and RDF. Such data can be used as a training source for ontology learning from web textual contents in order to bridge the gap between structured data and the Web. In this paper, we propose a new method of ontology learning that consists in learning linguistic patterns related to OLD entities attributes from web snippets. Our insight is to use the Linked Data as a skeleton for ontology construction and for pattern learning from texts. The contribution resides on learning patterns for relations existing in the Web of Linked Data from Web content. These patterns are used to populate the ontology core schema with new entities and attributes values. The experiments of the proposal have shown promising results in precision.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)
Marneffe, M.C., Manning, C.D.: The Stanford typed dependencies representation. In: Coling 2008: Proceedings of the workshop on Cross-Framework and Cross-Domain Parser Evaluation (CrossParser 2008), pp. 1–8. Association for Computational Linguistics, Stroudsburg (2008)
Sabou, M., Fernandez, M., Motta, E.: Evaluating Semantic Relations by Exploring Ontologies on the Semantic Web. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.) NLDB 2009. LNCS, vol. 5723, pp. 269–280. Springer, Heidelberg (2010)
Hearst, M.A.: Automatic Acquisition of Hyponyms. Technical Report. University of California at Berkeley, Berkeley, CA, USA (1992)
Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatising the learning of lexical patterns: an application to the enrichment of WordNet by extracting semantic relationships from Wikipedia. Data and Knowledge Engineering 61(3), 484–499 (2007)
Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hypernym discovery. In: Proceedings of NIPS 17 (2005)
Alani, H.: Position paper: ontology construction from online ontologies. In: Proceedings of the 15th International Conference on World Wide Web (WWW 2006). ACM, New York (2006)
Ramakrishnan, C., Mendes, P.N., Wang, S., Sheth, A.P.: Unsupervised Discovery of Compound Entities for Relationship Extraction. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 146–155. Springer, Heidelberg (2008)
Zouaq, A., Gagnon, M., Ozell, B.: Semantic Analysis using Dependency-based Grammars and Upper-Level Ontologies. International Journal of Computational Linguistics and Applications 1(1-2), 85–101 (2010)
Kim, J., Kim, P., Chung, H.: Ontology construction using online ontologies based on selection, mapping and merging. IJWGS 7(2), 170–189 (2011)
Cimiano, P.: Ontology Learning and Population from Text: algorithm, evaluation and application. Springer (2006)
Maynard, D., Funk, A., Peters, W.: Using Lexico-Syntactic Ontology Design Patterns for ontology creation and population. In: WOP 2009 – ISWC Workshop on Ontology Patterns, Washington (2009)
D’Aquin, M., Kronberger, G., Suárez-Figueroa, M.: Combining Data Mining and Ontology Engineering to enrich Ontologies and Linked Data. In: Workshop: Knowledge Discovery and Data Mining Meets Linked Open Data - Know@LOD at Extended Semantic Web Conference, ESWC (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tiddi, I., Mustapha, N.B., Vanrompay, Y., Aufaure, MA. (2012). Ontology Learning from Open Linked Data and Web Snippets. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds) On the Move to Meaningful Internet Systems: OTM 2012 Workshops. OTM 2012. Lecture Notes in Computer Science, vol 7567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33618-8_59
Download citation
DOI: https://doi.org/10.1007/978-3-642-33618-8_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33617-1
Online ISBN: 978-3-642-33618-8
eBook Packages: Computer ScienceComputer Science (R0)