Abstract
In the paper, we discuss nondeterministic rules in decision tables, called the truncated nondeterministic rules. These rules have on the right hand side a few decisions. We show that the truncated nondeterministic rules can be used for improving the quality of classification.
We propose a greedy algorithm of polynomial time complexity to construct these rules. We use this type of rules, to build up rule-based classifiers. These classifiers, classification algorithms, are used not only nondeterministic rules but also minimal rules in the sense of rough sets. These rule-based classifiers were tested on the group of decision tables from the UCI Machine Learning Repository. The reported results of the experiment show that the proposed classifiers based on nondeterministic rules improve the classification quality but it requires tuning some of their parameters relative to analyzed data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207–216. ACM Press, New York (1993)
Bazan, J.G., Szczuka, M.S., Wojna, A., Wojnarski, M.: On the Evolution of Rough Set Exploration System. In: Tsumoto, S., et al. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 592–601. Springer, Heidelberg (2004)
Delimata, P., Moshkov, P., Skowron, A., Suraj, Z.: Inhibitory Rules in Data Analysis: A Rough Set Approach. SCI, vol. 163. Springer, Heidelberg (2009)
Delimata, P., et al.: Comparison of Some Classification Algorithms Based on Deterministic and Nondeterministic Decision Rules. In: Peters, J.F., et al. (eds.) Transactions on Rough Sets XII. LNCS, vol. 6190, pp. 90–105. Springer, Heidelberg (2010)
Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine (2010), http://archive.ics.uci.edu/ml
Grzymala-Busse, J.W.: LERS - A Data Mining System. In: Maimon, O., Rokach, L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 1347–1351. Springer, New York (2005)
Jach, T., Nowak-Brzezińska, A., Simiński, R., Xięski, T.: Towards a Practical Approach to Discover Internal Dependencies in Rule-Based Knowledge Bases. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 232–237. Springer, Heidelberg (2011)
Marszał–Paszek, B., Paszek, P.: Minimal Templates and Knowledge Discovery. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 411–416. Springer, Heidelberg (2007)
Moshkov, M., Skowron, A., Suraj, Z.: Maximal consistent extensions of information systems relative to their theories. Information Sciences 178(12), 2600–2620 (2008)
Michalski, R.: http://www.mli.gmu.edu/michalski/
Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rudiments of Rough Sets. Information Sciences 177, 3–27 (2007); Rough Sets: Some Extensions. Information Sciences 177, 28–40 (2007); Rough Sets and Boolean Reasoning. Information Sciences 177, 41–73 (2007)
Rissanen, J.: Modeling by Shortest Data Description. Automatica 14, 465–471 (1978)
Rosetta, http://www.lcb.uu.se/tools/rosetta/
Rough Set Exploration System, http://logic.mimuw.edu.pl/~rses
Skowron, A., Suraj, Z.: Rough Sets and Concurrency. Bulletin of the Polish Academy of Sciences 41, 237–254 (1993)
Triantaphyllou, E., Felici, G. (eds.): Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Springer Science and Business Media, LLC, New York (2006)
Tsumoto, S.: Modelling Medical Diagnostic Rules Based on Rough Sets. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 475–482. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Paszek, P., Marszał-Paszek, B. (2012). Nondeterministic Decision Rules in Classification Process. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds) On the Move to Meaningful Internet Systems: OTM 2012 Workshops. OTM 2012. Lecture Notes in Computer Science, vol 7567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33618-8_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-33618-8_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33617-1
Online ISBN: 978-3-642-33618-8
eBook Packages: Computer ScienceComputer Science (R0)