Skip to main content

Investigating Co-infection Dynamics through Evolution of Bio-PEPA Model Parameters: A Combined Process Algebra and Evolutionary Computing Approach

  • Conference paper
Computational Methods in Systems Biology (CMSB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7605))

Included in the following conference series:

Abstract

Process algebras are an effective method for defining models of complex interacting biological processes, but defining a model requires expertise from both modeller and domain expert. In addition, even with the right model, tuning parameters to allow model outputs to match experimental data can be difficult. This is the well-known parameter fitting problem. Evolutionary algorithms provide effective methods for finding solutions to optimisation problems with large search spaces and are well suited to investigating parameter fitting problems. We present the Evolving Process Algebra (EPA) framework which combines an evolutionary computation approach with process algebra modelling to produce parameter distribution data that provides insight into the parameter space of the biological system under investigation. The EPA framework is demonstrated through application to a novel example: T helper cell activation in the immune system in the presence of co-infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäck, T., Fogel, D., Michalewicz, Z.: Evolutionary Computation, vol. 1,2. Taylor & Francis (2000)

    Google Scholar 

  2. Baeten, J.: A brief history of process algebra. Theoretical Computer Science 335(2/3), 131–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardo, M., Degano, P., Zavattaro, G. (eds.): SFM 2008. LNCS, vol. 5016. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  4. Centre for Systems Biology at Edinburgh: Systems biology software infrastructure (2011), http://www.sbsi.ed.ac.uk/

  5. Chou, I.C., Voit, E.O.: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences 219, 57–83 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciocchetta, F., Hillston, J.: Bio-PEPA: a Framework for the Modelling and Analysis of Biochemical Networks. Theoretical Computer Science 410, 3065–3084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, J.: The crucial role of CS in systems and synthetic biology. Communications of the Association for Computing Machinery 51, 15–18 (2008)

    Article  Google Scholar 

  8. De Jong, K.A.: Evolutionary computation - a unified approach. MIT Press (2006)

    Google Scholar 

  9. Duguid, A., Gilmore, S., Guerriero, M., Hillston, J., Loewe, L.: Design and development of software tools for Bio-PEPA. In: Proc. of Winter Simulation Conference 2009, pp. 956–967 (2009)

    Google Scholar 

  10. Finkleman, F.D., Shea-Donohue, T., Goldhill, J., Sullivan, C.A., Morris, S.C., Madden, K.B., Gause, W.C., Urban Jr., J.F.: Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annual Review of Immunology 15, 505–533 (1997)

    Article  Google Scholar 

  11. Fogel, G.B., Corne, D.W.: Evolutionary Computation in Bioinformatics. Morgan-Kaufmann (2003)

    Google Scholar 

  12. Fraser, A.: Simulation of genetic systems by automatic digital computers. Australian Journal of Biological Sciences 10, 484–491 (1957)

    Google Scholar 

  13. Gibson, M.A., Bruck, J.: Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. Journal of Physical Chemistry 104, 1876–1889 (2000)

    Article  Google Scholar 

  14. Goff, L.L., Lamb, J., Graham, A., Harcus, Y., Allen, J.E.: IL-4 is required to prevent filarial nematode development in resistant but not susceptible strains of mice. International Journal for Parasitology 32, 1277–1284 (2002)

    Article  Google Scholar 

  15. Goldberg, D.: Genetic Algorithms in Search, Optimization & Machine Learning. Addison Wesley (1989)

    Google Scholar 

  16. Hartgers, F., Yazdanbakhsh, M.: Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunology 28, 497–506 (2006)

    Article  Google Scholar 

  17. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press (1996)

    Google Scholar 

  18. Himmelspach, J., Ewald, R., Uhrmacher, A.M.: A Flexible and Scalable Experimentation Layer. In: Mason, S.J., Hill, R.R., Mnch, L., Rose, O., Jefferson, T., Fowler, J.W. (eds.) Proceedings of the 2008 Winter Simulation Conference, pp. 827–835. IEEE (2008)

    Google Scholar 

  19. Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press (1992)

    Google Scholar 

  20. Luke, S.: Essentials of Metaheuristic, Lulu (2009), http://cs.gmu.edu/~sean/book/metaheuristics/

  21. Machado, D., Costa, R., Rocha, M., Ferreira, E., Tidor, B., Rocha, I.: Modeling formalisms in systems biology. AMB Express 5, 1–45 (2011)

    Google Scholar 

  22. Mahajan, S., Gray, D., Harnett, W., Graham, A., Allen, J.: Helminth-induced unmodified Th2 cells affect malaria-induced immune responses but alter disease little (2010) unpublished draft

    Google Scholar 

  23. Marco, D., Cairns, D., Shankland, C.: Optimisation of process algebra models using evolutionary computation. In: Proceedings of 2011 IEEE Congress on Evolutionary Computation, pp. 1296–1301. IEEE (2011)

    Google Scholar 

  24. Marco, D., Shankland, C., Cairns, D.: Evolving bio-pepa process algebra models using genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 177–183. ACM (2012)

    Google Scholar 

  25. McCaig, C., Begon, M., Norman, R., Shankland, C.: A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology. Theory in Biosciences 130, 19–29 (2011), special issue on emerging modelling methodologies

    Google Scholar 

  26. Prandi, D.: Particle swarm optimization for stochastic process calculi. In: Proceedings of the 9th Workshop on Process Algebra and Stochastically Timed Activities, Department of Computing, pp. 77–82. Imperial College, London (2010)

    Google Scholar 

  27. Priami, C.: Process calculi and life science. Electronic Notes in Theoretical Computer Science 162, 301–304 (2006)

    Article  Google Scholar 

  28. Ross, B.J., Imada, J.: Evolving stochastic processes using feature tests and genetic programming. In: 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1059–1066. ACM (2009)

    Google Scholar 

  29. Stockwell, D.: Genetic algorithms II. In: Machine Learning Methods for Ecological Applications, pp. 123–144. Kluwer Academic Publishers (1999)

    Google Scholar 

  30. Zhu, J., Paul, W.: Heterogeneity and plasticity of T helper cells. Cell Research 20, 4–12 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marco, D. et al. (2012). Investigating Co-infection Dynamics through Evolution of Bio-PEPA Model Parameters: A Combined Process Algebra and Evolutionary Computing Approach. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33636-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33635-5

  • Online ISBN: 978-3-642-33636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics