Skip to main content

Visual Approach Facilitating the Importance Analysis of Component Fault Trees

  • Conference paper
Computer Safety, Reliability, and Security (SAFECOMP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7613))

Included in the following conference series:

  • 2111 Accesses

Abstract

(Component) fault tree analysis is a safety analysis technique of embedded systems. Importance analysis estimates the respective contributions of potential basic failures to an overall system failure. The analysis results are typically represented in data-aggregated forms. There are only few associations between these forms and component fault tree structures that provide meaningful information. In this paper, we propose a visualization approach that integrates the importance analysis results with structures of component fault trees. This approach facilitates the identification of the critical components and supports the analysis of the influence of the important basic failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEC. Functional safety of electrical/electronic/programmable electronic safety-related systems. International Standard IEC 61508 (2000)

    Google Scholar 

  2. IEC. Fault Tree Analysis. International Standard IEC 61025, Geneva (1990)

    Google Scholar 

  3. Vesely, W.E., Dugan, J., Fragola, J., Minarick III, J., Railsback, J., Stamatelatos, M.: Fault Tree Handbook with Aerospace Applications. NASA (2002)

    Google Scholar 

  4. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. U.S.Nuclear Regulatory Commission (1981)

    Google Scholar 

  5. Kaiser, B., Liggesmeyer, P., Maeckel, O.: A new component concept for fault trees. In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and Software (SCS 2003), Adelaide, Australia, pp. 37–46 (2003)

    Google Scholar 

  6. Stamatelatos, M., Apostolakis, G., Dezfuli, H., Everline, C., Guarro, S., Moieni, P., Mosleh, A., Paulos, T., Youngblood, R.: Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners. NASA (2002)

    Google Scholar 

  7. Fussell, J.B.: How to hand calculate system reliability characteristics. IEEE Transactions on Reliability R-24(3), 169–174 (1975)

    Article  Google Scholar 

  8. Aldservice. RAMCommander, http://www.aldservice.com (accessed June 15, 2012)

  9. ReliaSoft. BlockSim, http://www.reliasoft.com/BlockSim (accessed June 15, 2012)

  10. University of Kaiserslautern. ESSaREL, http://www.essarel.de (accessed June 15, 2012)

  11. Kruskal, J.B., Landwehr, J.M.: Icicle Plots: Better Displays for Hierarchical Clustering. The American Statistician 37(2), 162–168 (1983)

    Google Scholar 

  12. Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach. ACM Trans. Graph. 11(1), 92–99 (1992)

    Article  MATH  Google Scholar 

  13. Stasko, J., Zhang, E.: Focus+Context Display and Navigation Techniques for Enhancing Radial, Space-Filling Hierarchy Visualizations. In: Proceedings of the IEEE Symposium on Information Visualization 2000 (INFOVIS 2000), pp. 57–65. IEEE Computer Society, Washington, DC (2000)

    Chapter  Google Scholar 

  14. Barlow, T., Neville, P.: A Comparison of 2-D Visualizations of Hierarchies. In: Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS 2001), pp. 131–138. IEEE Computer Society (2001)

    Google Scholar 

  15. McGuffin, M.J., Robert, J.-M.: Quantifying the space-efficiency of 2D graphical representations of trees. Information Visualization 9(2), 115–140 (2010)

    Article  Google Scholar 

  16. Ghoniem, M., Fekete, J.-D., Castagliola, P.: A comparison of the readability of graphs using node-link and matrix-based representations. In: Proceedings of the IEEE Symposium on Information Visualization 2004, pp. 17–24 (2004)

    Google Scholar 

  17. Keller, R., Eckert, C.M., Clarkson, P.J.: Matrices or node-link diagrams: which visual representation is better for visualising connectivity models? Information Visualization 5, 62–76 (2006)

    Article  Google Scholar 

  18. The Robotics Research Lab at the University of Kaiserslautern. RAVON (Robust Autonomous Vehicle for Off-road Navigation), http://agrosy.informatik.uni-kl.de (accessed June 15, 2012)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Y., Keller, P., Liggesmeyer, P. (2012). Visual Approach Facilitating the Importance Analysis of Component Fault Trees. In: Ortmeier, F., Daniel, P. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2012. Lecture Notes in Computer Science, vol 7613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33675-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33675-1_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33674-4

  • Online ISBN: 978-3-642-33675-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics