Skip to main content

Developing Serious Games Specifically Adapted to People Suffering from Alzheimer

  • Conference paper
Serious Games Development and Applications (SGDA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7528))

Included in the following conference series:

Abstract

To face new challenges caused by society aging, several researchers have initiated the experimentation of serious games as a re-education platform to help slowing down the decline of people suffering from Alzheimer. In the last few years, academic studies have been conducted and some commercial products (Nintendo’s Brain Age, Big Brain Academy, etc.) have emerged. Nevertheless, these initiatives suffer from multiple important limitations since they do not really suit perceptual and interaction needs of silver-aged gamers, more specifically people suffering from Alzheimer disease. In an effort to address this important issue, we present in this paper a set of specific guidelines for designing and implementing effective serious games targeting silver-aged and Alzheimer’s patients. Our guidelines cover the following aspects: (i) choosing right in-game challenges, (ii) designing appropriate interaction mechanisms for cognitively impaired people, (iii) implementing artificial intelligence for providing adequate assistive prompting and dynamic difficulty adjustments, (iv) producing effective visual and auditory assets to maximize cognitive training. Also, as a case study, we present the prototype of our new serious game for Alzheimer’s patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DFC intelligence, Game Market Overview, public report (2011)

    Google Scholar 

  2. Miller, D.J., Robertson, D.P.: Using a game console in the primary classroom: effects of “brain training” program on computation and self-esteem. British Journal of Educational Technology 41, 242–255 (2010)

    Article  Google Scholar 

  3. Rebolledo-Mendez, G., Avramides, K., Freitas, S., Memarzia, K.: Societal impact of a serious game on raising public awareness: the case of FloodSim. In: Proc. of the ACM SIGGRAPH Symp. on Video Games (Sandbox 2009), pp. 15–22. ACM (2009)

    Google Scholar 

  4. Meijer, F., Geudeke, B.L., van den Broek, E.L.: Navigation through virtual environments: visual realism improves spacial cognition. Cyberpsychology& Behavior 12(5), 517–521 (2009)

    Article  Google Scholar 

  5. Nacke, L.E., Nacke, A., Lindley, C.A.: Brain training for silver aged gamers: effets of age and game form on effectiveness, self-assessment, and gameplay. Cyberpsychology& Behavior 12(5), 493–499 (2009)

    Article  Google Scholar 

  6. United Nations (UN), World Population Ageing 2009, Department of Economic and Social Affairs: Population Division, 129 pages (2009)

    Google Scholar 

  7. Imbeault, F., Bouchard, B., Bouzouane, A.: Serious Games in Cognitive Training for Alzheimer’s Patients. In: IEEE International Conference on Serious Games and Applications for Health (IEEE-SeGAH), Braga, Portugal, November 16-18, pp. 122–129 (2011)

    Google Scholar 

  8. Jiang, C.-F., Chen, D.-K., Li, Y.-S., Kuo, J.-L.: Development of a computer-aided tool for evaluation and training in 3d spatial cognitive function. In: 19th IEEE Symposium on Computer-Based Medical Systems, pp. 241–244 (2006)

    Google Scholar 

  9. Hofmann, M., Rösler, A., Schwarz, W., Müller-Spahn, F., Kräuchi, K., Hock, C., Seifritz, E.: Interactive computer-training as a therapeutic tool in Alzheimer’s disease”. Comprehensive Psychiatry 44(3), 213–219 (2003)

    Article  Google Scholar 

  10. Tremblay, J., Bouchard, B., Bouzouane, A.: Adaptive game mechanics for learning purposes: making serious games playable and fun. In: Proc. Int. Conf. on Computer Supported Education: session “Gaming platforms for education and reeducation” (CEDU 2010), vol. 2, pp. 465–470 (April 2010)

    Google Scholar 

  11. Lapointe, J., Bouchard, B., Bouchard, J., Potvin, A., Bouzouane, A.: Smart Homes for People with Alzheimer’s Disease: Adapting Prompting Strategies to the Patient’s Cognitive Profile. In: 5th Int. Conference on PErvasive Technologies Related to Assistive Environments (PETRA), pp. 1–9. ACM (to appear, 2012)

    Google Scholar 

  12. Baum, C., Edwards, D.F.: Cognitive performance in senile dementia of the Alzheimer’s type: the kitchen task assessment. American Journal of Occupational Therapy 47, 431–443 (1993)

    Article  Google Scholar 

  13. Schwartz, M.F., Segal, M., Veramonti, T., Ferraro, M., Buxbaum, L.J.: The Naturalistic Action Test: A standardised assessment for everyday action impairment. Neuropsychological Rehabilitation 12(4), 311–339 (2002)

    Article  Google Scholar 

  14. Baid, H., Lambert, N.: Enjoyable learning: the role of humour, games, and fun activities in nursing and midwifery education. Nurse Education Today 30(6), 548–552 (2010)

    Article  Google Scholar 

  15. Laprise, H., Bouchard, J., Bouchard, B., Bouzouane, A.: Creating tools and trial data sets for smart home researchers: experimenting activities of daily living with normal subjects to compare with Alzheimer’s patients. In: Proc. of the Int. Conf. IADIS e-Health (EH 2010), pp. 143–150 (2010)

    Google Scholar 

  16. Bouchard, B., Giroux, S., Bouzouane, A.: A keyhole plan recognition model for Alzheimer’s patients: first results. Journal of Applied Artificial Intelligence (AAI) 22(7), 623–658 (2007)

    Article  Google Scholar 

  17. Kramer, A.F., Colcombe, S.J., McAuley, E., et al.: Enhancing brain and cognitive function of older adults through fitness training. J. Mol. Neurosci. 20, 213–221 (2003)

    Article  Google Scholar 

  18. Hillman, C.H., Erickson, K.I., Kramer, A.F.: Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65 (2008)

    Article  Google Scholar 

  19. Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Optimising engagement for stroke rehabilitation using serious games. The Visual Computer: International Journal of Computer Graphics. SeriousGames and Virtual Worlds, 1085–1099 (2009)

    Google Scholar 

  20. Kuznetsov, S., Dey, A.K., Hudson, S.E.: The Effectiveness of Haptic Cues as an Assistive Technology for Human Memory. In: Proceedings of the 7th International Conference on Pervasive Computing, Nara, Japan, May 11-14, pp. 168–175 (2009)

    Google Scholar 

  21. Alzheimer’s Association. Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia 7(2) (2001)

    Google Scholar 

  22. Jones, G.M.M., van der Eerden, W.J.: Designing care environments for persons with Alzheimer’s disease: visuoperceptual considerations. Reviews in Clinical Gerontology 18(1), 13–37

    Google Scholar 

  23. Mihailidis, A., Boger, J., Canido, M., Hoey, J.: The use of an intelligent prompting system for people with dementia. ACM Interactions 14(4), 34–37 (2007)

    Article  Google Scholar 

  24. Ally, B.A., Gold, C.A., Budson, A.E.: “The picture superiority effect in patients with Alzheimer’s disease and mild cognitive impairment”. Neuropsychologia 47(2), 595–598 (2009)

    Article  Google Scholar 

  25. Van Tassel, M., Bouchard, J., Bouchard, B., Bouzouane, A.: Guidelines for Increasing Prompt Efficiency in Smart Homes According to the Resident’s Profile and Task Characteristics. In: Abdulrazak, B., Giroux, S., Bouchard, B., Pigot, H., Mokhtari, M. (eds.) ICOST 2011. LNCS, vol. 6719, pp. 112–120. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. DeCarlo, D., Rusinkiewicz, S.: Highlight lines for conveying shape. In: Proc. of the 5th Int. Symp. on Non-photorealistic Animation and Rendering, pp. 63–70 (2007)

    Google Scholar 

  27. Pigot, H., Mayers, A., Giroux, S.: The intelligent habitat and everyday life activity support. In: Proc. 5th Int. Conf. on Simulations in Biomedecine, pp. 507–516 (April 2003)

    Google Scholar 

  28. Chen, J.: Flow in games (and everything else). Communications of the ACM 50(4), 31–34

    Google Scholar 

  29. Hunicke, R.: The case for dynamic difficulty adjustment in games. In: Proc. of the 2005 ACM SIGCHI Int. Conf. on Advances in Computer Entertainment Technology (ACE 2005), pp. 429–433 (June 2005)

    Google Scholar 

  30. Wilson, D.H., Philipose, M.: Maximum A Posteriori Path Estimation with Input Trace Perturbation: Algorithms and Application to Credible Rating of Human Routines. In: Proc. of the Ninetheenth International Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, UK, pp. 895–901 (2005)

    Google Scholar 

  31. Coulom, R.: Le problème des classements. Pour La Science, 20–27 (July 2010)

    Google Scholar 

  32. Tremblay, J.: A new approach to dynamicdifficultyadjusment in videogames, Master Thesis (M.Sc.), Université du Québec à Chicoutimi, 108 pages (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouchard, B., Imbeault, F., Bouzouane, A., Menelas, BA.J. (2012). Developing Serious Games Specifically Adapted to People Suffering from Alzheimer. In: Ma, M., Oliveira, M.F., Hauge, J.B., Duin, H., Thoben, KD. (eds) Serious Games Development and Applications. SGDA 2012. Lecture Notes in Computer Science, vol 7528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33687-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33687-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33686-7

  • Online ISBN: 978-3-642-33687-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics