Abstract
This paper begins by stating that the underlying concepts of signals and antigen used by the Dendritic Cell Algorithm are too abstract and arbitrary to be of use in real world applications as they stand. To address this, these concepts are more explicitly defined within a specific application area, namely that of data stream analysis. These new definitions are based around the outputs of the Change Point Detecting Subspace Tracker (CD-ST), a recently developed algorithm for detecting key change points across multiple data streams. Preliminary results demonstrate the utility of this new definition for antigen. The paper concludes by laying the theoretical groundwork for a novel anomaly detection framework for use in data streaming applications. The underlying methodology is to perform anomaly detection via the detection and classification of key change points that occur across the multiple data streams monitored.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Al-Hammadi, Y., Aickelin, U., Greensmith, J.: DCA for bot detection. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 1807–1816. IEEE (June 2008)
Author. Data Fusion Techniques for Temporal Correlation and Anomaly Detection. PhD thesis, Author’s Institution (submitted, April 2012)
Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. Technical Report 2002-19, Stanford InfoLab (2002)
Bojanczyk, A.W., Nagy, J.G., Plemmons, R.J.: Block RLS using row householder reflections. Linear Algebra and its Applications, 188–189, 31–61 (1993)
Comon, P., Golub, G.H.: Tracking a few extreme singular values and vectors in signal processing. Proceedings of the IEEE 78(8), 1327–1343 (1990)
dos Santos Teixeira, P.P.H., Milidiú, R.L.R.: Data stream anomaly detection through principal subspace tracking. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1609–1616 (2010)
Doukopoulos, X.G., Moustakides, G.V.: Fast and stable subspace tracking. IEEE Transactions on Signal Processing 56(4), 1452–1465 (2008)
Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman and Hall/CRC (2010)
Golub, G., Van Loan, C.: Matrix Computations, 2nd edn. John Hopkins University Press (1989)
Greensmith, J.: The Dendritic Cell Algorithm. Phd thesis, University of Nottingham (2007)
Gu, F., Feyereisl, J., Oates, R., Reps, J., Greensmith, J., Aickelin, U.: Quiet in Class: Classification, Noise and the Dendritic Cell Algorithm. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 173–186. Springer, Heidelberg (2011)
Gu, F., Greensmith, J., Aickelin, U.: Further Exploration of the Dendritic Cell Algorithm: Antigen Multiplier and Time Windows. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 142–153. Springer, Heidelberg (2008)
Johnson, N., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, 2nd edn., vol. 2. Wiley-Blackwell (1995)
Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics. Springer, New York (2002)
Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Knowledge and Information Systems 3(3), 263–286 (2001)
Keogh, E., Lin, J.: SAX Homepage, http://www.cs.ucr.edu/~eamonn/SAX.html
Kim, J., Bentley, P., Wallenta, C., Ahmed, M., Hailes, S.: Danger is ubiquitous: Detecting malicious activities in sensor networks using the dendritic cell algorithm. In: Networks, pp. 390–403 (2006)
Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop on Research issues in Data Mining and Knowledge Discovery - DMKD 2003, p. 2. ACM Press, New York (2003)
Manzoor, S., Shafiq, M.Z., Tabish, S.M., Farooq, M.: A Sense of ‘Danger’ for Windows Processes. In: Andrews, P.S., Timmis, J., Owens, N.D.L., Aickelin, U., Hart, E., Hone, A., Tyrrell, A.M. (eds.) ICARIS 2009. LNCS, vol. 5666, pp. 220–233. Springer, Heidelberg (2009)
Oates, R., Kendall, G., Garibaldi, J.: Frequency analysis for dendritic cell population tuning. Evolutionary Intelligence 1(2), 145–157 (2008)
Stibor, T., Oates, R., Kendall, G., Garibaldi, J.M.: Geometrical insights into the dendritic cell algorithm. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation - GECCO 2009, p. 1275. ACM Press, New York (2009)
Strobach, P.: The fast recursive row-Householder subspace tracking algorithm. Signal Process. 89(12), 2514–2528 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Musselle, C. (2012). Rethinking Concepts of the Dendritic Cell Algorithm for Multiple Data Stream Analysis. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds) Artificial Immune Systems. ICARIS 2012. Lecture Notes in Computer Science, vol 7597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33757-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-33757-4_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33756-7
Online ISBN: 978-3-642-33757-4
eBook Packages: Computer ScienceComputer Science (R0)