Skip to main content

An Improved Test Generation Approach from Extended Finite State Machines Using Genetic Algorithms

  • Conference paper
Software Engineering and Formal Methods (SEFM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7504))

Included in the following conference series:

  • 1049 Accesses

Abstract

This paper presents a new approach to test generation from extended finite state machines using genetic algorithms, by proposing a new fitness function for path data generation. The fitness function that guides the search is crucial for the success of a genetic algorithm; an improvement in the fitness function will reduce the duration of the generation process and increase the success chances of the search algorithm. The paper performs a comparison between the newly proposed fitness function and the most widely used function in the literature. The experimental results show that, for more complex paths, that can be logically decomposed into independent sub-paths, the new function outperforms the previously proposed function and the difference is statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: Generating feasible input sequences for extended finite state machines (EFSMs) using genetic algorithms. In: GECCO 2005, pp. 1081–1082. ACM (2005)

    Google Scholar 

  2. Derderian, K., Merayo, M.G., Hierons, R.M., Núñez, M.: Aiding Test Case Generation in Temporally Constrained State Based Systems Using Genetic Algorithms. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 327–334. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Derderian, K.A.: Automated Test Sequence Generation for Finite State Machines using Genetic Algorithms. Ph.D. thesis, School of Information Systems, Computing and Mathematics, Brunel University (2006)

    Google Scholar 

  4. Ferguson, R., Korel, B.: Software test data generation using the chaining approach. In: ITC, pp. 703–709. IEEE Computer Society (1995)

    Google Scholar 

  5. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  6. Meffert, K. et al.: JGAP - Java Genetic Algorithms and Genetic Programming Package, http://jgap.sf.net

  7. Kalaji, A., Hierons, R.M., Swift, S.: A search-based approach for automatic test generation from extended finite state machine (EFSM). In: TAIC-PART 2009, pp. 131–132. IEEE Computer Society (2009)

    Google Scholar 

  8. Kalaji, A., Hierons, R.M., Swift, S.: An integrated search-based approach for automatic testing from extended finite state machine (EFSM) models. Information & Software Technology 53(12), 1297–1318 (2011)

    Article  Google Scholar 

  9. Kalaji, A., Hierons, R.M., Swift, S.: Generating feasible transition paths for testing from an extended finite state machine (EFSM). In: ICST 2009, pp. 230–239. IEEE Computer Society (2009)

    Google Scholar 

  10. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng. 16(8), 870–879 (1990)

    Article  Google Scholar 

  11. Lefticaru, R., Ipate, F.: Automatic state-based test generation using genetic algorithms. In: SYNASC 2007, pp. 188–195. IEEE Computer Society (2007)

    Google Scholar 

  12. Lefticaru, R., Ipate, F.: Functional search-based testing from state machines. In: ICST 2008, pp. 525–528. IEEE Computer Society (2008)

    Google Scholar 

  13. McMinn, P.: Search-based software test data generation: A survey. Software Testing, Verification and Reliability 14(2), 105–156 (2004)

    Article  Google Scholar 

  14. McMinn, P., Holcombe, M.: Hybridizing Evolutionary Testing with the Chaining Approach. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 1363–1374. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Tracey, N., Clark, J., Mander, K., McDermid, J.: An automated framework for structural test-data generation. In: ASE 1998, pp. 285–288. IEEE Computer Society (1998)

    Google Scholar 

  16. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic structural testing. Information & Software Technology 43(14), 841–854 (2001)

    Article  Google Scholar 

  17. Zhao, R., Harman, M., Li, Z.: Empirical study on the efficiency of search based test generation for EFSM models. In: ICST Workshops, pp. 222–231 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lefticaru, R., Ipate, F. (2012). An Improved Test Generation Approach from Extended Finite State Machines Using Genetic Algorithms. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds) Software Engineering and Formal Methods. SEFM 2012. Lecture Notes in Computer Science, vol 7504. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33826-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33826-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33825-0

  • Online ISBN: 978-3-642-33826-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics