
A Systematic Approach to Atomicity
Decomposition in Event-B?

Asieh Salehi Fathabadi1, Michael Butler2, and Abdolbaghi Rezazadeh3

University of Southampton, UK
asf08r1,mjb2,ra33@ecs.soton.ac.uk

Abstract. Event-B is a state-based formal method that supports a re-
finement process in which an abstract model is elaborated towards an
implementation in a step-wise manner. One weakness of Event-B is that
control flow between events is typically modelled implicitly via variables
and event guards. While this fits well with Event-B refinement, it can
make models involving sequencing of events more difficult to specify and
understand than if control flow was explicitly specified. New events may
be introduced in Event-B refinement and these are often used to decom-
pose the atomicity of an abstract event into a series of steps. A second
weakness of Event-B is that there is no explicit link between such new
events that represent a step in the decomposition of atomicity and the
abstract event to which they contribute. To address these weaknesses,
atomicity decomposition diagrams support the explicit modelling of con-
trol flow and refinement relationships for new events. In previous work,
the atomicity decomposition approach has been evaluated manually in
the development of two large case studies, a multi media protocol and
a spacecraft sub-system. The evaluation results helped us to develop a
systematic definition of the atomicity decomposition approach, and to
develop a tool supporting the approach. In this paper we outline this
systematic definition of the approach, the tool that supports it and eval-
uate the contribution that the tool makes.

1 Introduction

The Event-B formal method [1] is an evolution of classical B [2]. Event-B is
proven to be applicable in a wide range of domains, including distributed algo-
rithms, railway systems and electronic circuits. The Event-B modelling language
has a simple notation and structure. States of a system are defined by variables
and state changes of a system are defined by guarded actions, also called events.
The basic specification construct is a machine that comprises of variables and
events. Event-B supports refinement [3] in which an abstract model is elaborated
towards an implementation in a step-wise manner. During refinement steps a
model can be modified and enriched.

? Acknowledgement: This work is partly supported by the EU research project ICT
214158 DEPLOY (Industrial deployment of system engineering methods providing
high dependability and productivity) www.deploy-project.eu.

One weakness of Event-B is that control flow between events is typically mod-
elled implicitly. Since the Event-B language is a state-based language, ordering
between several events can only be modelled in event guards which include con-
ditions on state variables. Because Event-B is also used to model systems with
rich control flow properties, it has been observed that explicit control flow spec-
ification is beneficial [4], [5].

A second weakness of Event-B is that all refinement relationships between
refinement events and the abstract events are not explicit. Refinement in Event-
B can consist of introducing new events. Although the refinement process in
Event-B provides a flexible approach to modelling, it is not able to explicitly
show the relationships between abstract events and new events introduced during
a refinement step.

To address these weaknesses, the atomicity decomposition approach [6] ad-
dresses the explicit control flow modelling and explicit refinement relationships
representation. It provides a graphical notation to structure the refinement pro-
cess and to illustrate the explicit ordering between events of a model. The atom-
icity decomposition graphical notation contains tree structured diagrams based
on JSD structure diagrams by Jackson [7]. Semantics are given to an atomicity
decomposition diagram by generating an Event-B model from it.

In the rest of this paper, “AD” refers to Atomicity Decomposition. The steps
carried in our research are presented in Figure 1. AD is first introduced by
Butler [6] (step 1). It has been observed that methodological support for AD
was weak. So we decided to evaluate and enhance the existing AD approach
in [6]. For this reason we manually applied AD to two sizeable case studies, a
multi media protocol and a space craft system (step 2). The first case study,
the multi media protocol [8], contains requirements to establish, modify and
close a media channel between two endpoints for transferring multi media data.
Second case study is based on a space craft system called BepiColombo [9].
The manual development processes of these case studies have been published
in [10] and [11] respectively. Insights gained from these case studies, enable us
to define a formal description of the AD language (ADL) and formal translation
rules from AD diagrams to Event-B (step 3). Based on the ADL and translation
rule descriptions, we have developed the AD tool support, as a plug-in for the
Event-B tool-set, called Rodin (step 4). Our AD tool support, can automatically
generate Event-B models from AD diagrams. And finally we re-develop the case
study models using the provided AD tool support (step 5).

Initial AD

Manual

Developments of

Case Studies

ADL and

Translation

Rules

AD Tool

Support

Automatic

Developments of

Case Studies

Step 1

Step 2 Step 3 Step 4 Step 5

Fig. 1. Road Map

The contribution of this paper is to present ADL and translation rules from
AD diagrams to the Event-B language, covering steps 3, 4 and 5 of Figure 1. We

also outline the development of AD tool and the technologies that used in this
tool development. One of our objective in this paper is to assess how application
of translation rules, makes the automatic models of case studies more consistent
and systematic, comparing with the previous manual ones. Moreover the recent
automatic developments of case studies are briefly presented.

The paper is structured as follows: Section 2 outlines the Event-B method,
atomicity decomposition approach, related works and an overview of case studies
requirements; Section 3 contains the ADL description and definitions of transla-
tion rules; Section 4 presents the tool developed to support AD; In Section 5 we
evaluate how AD tool, has helped us to enhance the development of case studies
in a more consistence and systematic way; finally Section 6 concludes.

2 Background and Related Works

2.1 Event-B

The Event-B formal method [1], [12] has evolved from classical B [2] and action
systems [13]. Event-B is used in modelling and verifying consistency of models.
The modelling language is based on set theory and first order logic.

A model in Event-B consists of several Contexts and Machines. Contexts
contain the static part (types and constants) of a model while machines contain
the dynamic part (variables and events). Contexts provide axiomatic properties
of an Event-B model, whereas Machines provide behavioural properties of an
Event-B model. A context can be “extended” by other contexts and “referenced”
by machines. A machine can be “refined” by other machines and can reference
contexts.

Building a model in Event-B usually starts with an abstract level, and con-
tinues in successive refinement levels. The abstract model provides a simple view
of the system, focusing on main purposes of the system. Details are added grad-
ually to the abstract model during refinement levels. In Event-B, refinement is
used to introduce new functionality or add details of current functionality. One
of the important features of Event-B refinement is the ability to introduce new
events in a refinement level. From a given machine, Machine1, a new machine,
Machine2, can be built as a refinement of Machine1. In this case, Machine1
is called an abstraction of Machine2, and Machine2 will said to be a concrete
version of Machine1.

Rodin [14] is an Eclipse-based tool for formal modelling and proving in Event-
B. Rodin has an open platform, and is an extensible and adaptable modelling
tool. We have taken the advantage of the extensibility feature of the Rodin to
develop a tool support for the AD approach.

2.2 Atomicity Decomposition Approach

Although refinement in Event-B provides a flexible approach to modelling, it
has the weakness that we cannot explicitly represent the relationships between

abstract events and new events which are introduced in a refinement level. The
AD approach addresses this limitation. The idea is to augment Event-B refine-
ment with a graphical notation that is capable of representing the relationships
between abstract and concrete events explicitly. Using the AD approach has an-
other advantage which is that we can represent event ordering explicitly. Figure 2
illustrates these two features of AD graphical notation.

Assume machine M1 on the left hand side of Figure 2, refines machine M0
which contains the abstract specification of AbstractEvent. The machine M1
encodes its control flow (ordering between Event1 and Event2) via guards on
the events. This control flow is made explicit in the AD diagram presented in
the right hand side. This diagram explicitly illustrates that the effect achieved
by AbstractEvent at the abstract level, machine M0, is realized at the refined
level, machine M1, by occurrence of Event1 followed by Event2. The ordering
of the leaf events is always from left to right (this is based on JSD diagrams of
Jackson [7]). The solid line indicates that Event2 refines AbstractEvent while
the dashed line indicates that Event1 is a new event which refines skip. In the
Event-B model of machine M1 on the left hand side, Event1 does not have any
explicit connection with AbstractEvent, but the diagram indicates that we break
the atomicity of AbstractEvent into two sub-events in the refinement.

machine M1 refines M0 sees C0

variables Event1 Event2
invariants

@inv1 Event1 ⊆ PAR_SET
@inv2 Event2 ⊆ Event1
@inv3 Event2 = AbstractEvent

event INITIALISATION then
@act1 Event1 ≔ ∅

@act2 Event2 ≔ ∅

@act3 Event3 ≔ ∅

end

event Event1 any par where
@grd1 par ∉ Event1

then
@act1 Event1 ≔ Event1 ∪ {par}

end

event Event2 refines AbstractEvent
any par where

@grd1 par ∈ Event1
@grd2 par ∉ Event2

then
@act1 Event2 ≔ Event2 ∪ {par}

end

AbstractEvent (par)

Event1 (par) Event2 (par)

The sub events are read from left to right and indicate sequential control

A dashed line: refines skip A solid line: refines AbstractEvent

Root, abstract event, is decomposed into sub events

Fig. 2. Atomicity Decomposition Diagram

The parameter par in the diagram indicates that we are modelling multiple
instances of AbstractEvent and its sub-events. Events associated with different
values of par may be interleaved thus modelling interleaved execution of multiple
processes. The effect of an event with parameter par, is to add the value of par
to a set control variable with the same name as the event, i.e., par ∈ Event1

means that Event1 has occurred with value par. The use of a set means that
the same event can occur multiple times with different values for par. The guard
of an event with value par specifies that the event has not already occurred for
value par but has occurred for the previous event, e.g., the guard of Event2 says
that Event1 has occurred and Event2 has not occurred for value par.

2.3 Related Works

The desire to explicitly model control flow is not restricted to Event-B. To ad-
dress this issue usually a combination of two formal methods are suggested. A
good example of such an approach is Circus [15] combining CSP [16] and Z [17].
The combination of CSP and classical B [2] has also been investigated in [4]
and [18].

To provide explicit control flow for an Event-B model, a combination of two
formal methods is presented in [19] which is based on using CSP alongside Event-
B. As presented in Section 2.2, control flow can only be implicitly modelled in
state variables and event guards in Event-B. On the other hand CSP is a process-
based formalism, which explicitly supports specifying control flow via processes.

UML-B [20] provides a “UML-like” graphical front-end for Event-B. It adds
support for class-oriented and state machine modelling. State machines provide
us with a graphical notation to explicitly define event sequencing. Events are
represented by transitions on a state machine, and control flow is specified by
defining the source and target state of each transition.

Another method to explicitly define control flow properties of an Event-B
model is suggested in [21]. This method extends Event-B models with expres-
sions, called flows, defining event ordering. Flows are written in a language re-
sembling those in process algebra.

All techniques outlined in this section, only deal with explicit event sequenc-
ing; they do not support the explicit refinement relationship, provided by atom-
icity decomposition diagrams. The atomicity decomposition approach provides
a graphical front-end to Event-B along with other features such as supporting
explicit event sequencing and expressing refinement relationships between ab-
stract and refinement events. An extra feature of the AD approach is that the
graphical front-end of it can provide an overall visualisation of the refinement
structure, which is not supported by any of techniques outlined above.

2.4 Overview of Case Studies

This section outlines an overview of our case study systems, a multi media
protocol [8] and a space craft system based on BepiColombo [9].

Multi Media Protocol This case study specifies a protocol for establish-
ing, modifying and closing a media channel. A media channel is established for
transferring multi-media data. There are three phases in the protocol: establish,
modify and close. In the modification phase some properties of the established
channel can be modified, such as the codec used for data.

It is worth to compare our approach to the multi media protocol with the
approach taken by Zave and Cheung [8]. Zave and Chueng present Promela
models of the behaviour of each end of the protocol and use the Spin model
checker to verify that these models satisfy certain safety and liveness properties.
In our approach with Event-B, we start with a more global view of the intension
of the protocol and then use atomicity decomposition to arrive at models that
have similar levels of detail to the Promela models.

Space Craft System Exploration of the planet Mercury is the main goal of the
BepiColombo mission. One of the BepiColombo subsystems consists of a core and
four devices. The core and the control software are responsible for controlling the
power of devices and their operation states and to handle TeleCommand (TC)
and TeleMessage (TM) communications. In our work, we treat a part of the
BepiColombo system related to the management of TC and TM communications.
The core software (CSW) plays a management role over the devices. CSW is
responsible for communication with Earth on one hand and with the devices on
the other hand. Here is the summary of the system requirements:

– A TeleCommand (TC) is received by the core from Earth.
– The CSW checks the syntax of the received TC.
– Further semantic checking has to be carried out on the syntactically validated

TC. If the TC contains a message for one of the devices, it has to be sent to
the device for semantic checking, otherwise the semantic checking is carried
out in the core.

– For each validate TC a control TeleMessage (TM) is generated and sent to
Earth.

3 AD Language and Translation Rules

3.1 Atomicity Decomposition Language

To describe the AD language (ADL) syntax, we adopted Augmented Backus-
Naur Form (ABNF) [22]. ABNF is a metalanguage based on Backus-Naur Form
(BNF).

An excerpt of the ADL syntax, describing a single AD diagram, is presented
in Figure 3. This description is only a subset of the full ADL. It only includes
three of AD constructors which are used in our case studies and are explained
later in the following sections. There are other AD constructors which are not
presented in this paper because of space limitation.

machine = 1*flow

flow = ''flow'' (name, *par) (1*child (ref))

child = ''leaf'' (name) / constructor / 1* flow

cons-child = ''leaf'' (name) / 1* flow

constructor = (''and'' / ''or'' / ''xor'') (2* cons-child)

/ (''all'' / ''some'' / ''one'') (par) (cons-child)

/ ''loop'' (cons-child)

flow = ''flow'' (name, *par) (1*child (ref))

child = ''leaf'' (name) / constructor

constructor = ''loop'' (''leaf'' (name))

/ ''xor'' (2* ''leaf'' (name))

/ ''one'' (par) (''leaf'' (name))

Fig. 3. Syntax of the AD Language (ADL)

A flow, in Figure 3, refers to a single atomicity decomposition. To describe the
type of a line (solid/dashed), we consider a boolean property, called “ref”. When
a sub-event refines the abstract event (solid line) , “ref” is one; otherwise “ref”
is zero. Considering Figure 3, the ABNF of ADL may be described informally
as follows:

– A flow consists of a name, zero or more parameters, followed by one or more
children. Each child of a flow has a “ref ” property.

– A child is either a “leaf ” with a name, or a constructor.
– A constructor is either a “loop” with one leaf as its child or a ‘xor” with two

or more leaves or an “one” with a parameter, followed by one leaf.

3.2 Translation Rules

Semantics are given to an AD diagram by generating an Event-B model from
it, based on some translation rules. In this section, we discuss these translation
rules. Here, due to space limitation, we only present translation rules that are
used in our two case studies. 1 The initial AD diagrammatic notation in [6] has
been extended with some AD constructors. Three of them, loop, xor and one,
used in our case study developments are introduced here.

The main syntactic elements of an Event-B machine are variables, invariants,
guards and actions. The encoding of AD diagrams in Event-B uses a collection of
Event-B syntactic patterns such as typing invariants, sequencing invariants, par-
titioning invariants, disabling guards, sequencing guards and leaf actions. Our
translation scheme defines a separate rule for each of these syntactic patterns.
Figure 4 outlines the full list of translation rules used in this paper. Each trans-
lation rule defines a transformation from an AD source element to an Event-B
destination element. Note that for each AD element usually there are more than
one applicable translation rule. We explain the role of each translation rule us-
ing snippets taken from the case studies. We first explain the rules related to
sequencing of events, then the rules for the loop constructor, a solid leaf, the xor
and one constructors.

TR1: leaf leaf variable

TR2: first leaf typing invariant

TR3: non-first leaf sequencing invariant

TR4: leaf non-refining event

TR5: leaf disabling guard

TR6: non-first leaf sequencing guard

TR7: leaf leaf action

TR8: loop loop guard

TR9: solid leaf gluing invariant

TR10: solid leaf refining event

TR11: solid xor partition gluing invariant

TR12: xor xor guard

TR13: one cardinality invariant

TR14: one one guard

Fig. 4. Translation Rules

1 The full set of translation rules is presented in the PhD thesis of the first author of
this paper.

Sequencing Rules As discussed in Section 2.2, one major feature of AD dia-
grams is to explicitly represent sequencing between events. To illustrate this con-
cept, we have taken a part of the most abstract level diagrams of BepiColombo
system, presented in higher level of Figure 5. In a most abstract diagram, the
name of the system appears in an oval as the root node, and the names of the
most abstract events appear in the leaves in an order from left to right. This
diagram illustrates the scenario when a TC is received by the core, ReceiveTC
event, and then it is validated by TC Validation Ok event.

The arrows in Figure 5 indicate the application of translation rules. For ex-
ample, the TR1 arrow from the ReceiveTC leaf in the diagram to the ReceiveTC
variable in the Event-B model shows that the application of TR1 rule to each
source leaf, produces a variable in the Event-B model. The generated variables
are later used to control the flow of the leaf events.

Event-B Model:

variables ReceiveTC TC_Validation_Ok

invariants
@inv1 ReceiveTC ⊆ TC
@inv2 TC_Validation_Ok ⊆ ReceiveTC

event ReceiveTC
any tc
where
@grd1 tc ∉ ReceiveTC

then
@act1 ReceiveTC ≔

ReceiveTC ∪ {tc}
end

event TC_Validation_Ok
any tc
where
@grd1 tc ∉ TC_Validation_Ok
@grd2 tc ∈ ReceiveTC

then
@act1 TC_Validation_Ok ≔

TC_Validation_Ok ∪ {tc}
end

AD Diagram:

ReceiveTC (tc) TC_Validation_Ok (tc)

BepiColombo (tc)

TR1

TR2

TR4

TR5

TR7

TR1

TR3

TR4

TR5

TR6

TR7

Fig. 5. The Most Abstract Level Model, BepiColombo System

Application of TR2 to the first leaf produces an invariant which defines the
type of the leaf variable. Application of TR3 to the second leaf produces an
invariant which describes the sequencing constraint between two leaf events.
The sequencing invariant describes the second leaf variable as a subset of the
previous leaf variable, since the second leaf event is allowed to execute only after
execution of its previous leaf event.

In the most abstract diagram, since all leaves illustrate the most abstract
events, there is no solid line. For each leaf with a dashed line, TR4 generates
a non-refining event. The parameter of the leaf is transformed to the event
parameter. For each leaf, TR5 generates a disabling guard, which describes that
the leaf event has not executed for the same instance of the parameter before.
For each non-first event, like TC Validation Ok here, another guard is needed
to make sure that the previous event has been executed for the parameter value
before; this translation is carried out via TR6. Finally TR7 adds an action for

each leaf, which disables the corresponding leaf event for a specific parameter
value.

Translation rules (TR1-TR7) that are outlined in Figure 4 and applied in this
section, are only applicable to leaf nodes and encode sequencing collectively. We
discuss the rest of rules in the following sections.

Loop Constructor The loop constructor is used to model zero or more exe-
cutions of a leaf. Figure 6 presents the most abstract AD diagram of the multi
media protocol which contains the loop constructor as its second child. The dia-
gram states that first a media channel is established, then it can be modified zero
or more times and finally it is closed. Considering Figure 6, there is no variable
generated for the leaf connected to the loop constructor, since we do not need
to record the loop event execution. The event after the loop event can execute
after execution of the event before the loop event (in the case of zero executions
of the loop event).

establishMediaChannel (ch) close (ch)modify (ch)

*

Media Channel (ch)

variables establishMediaChannel close

invariants
@inv1 establishMediaChannel ⊆ MEDIACHANNEL
@inv2 close ⊆ establishMediaChannel

event establishMediaChannel
any ch
where

@grd1 ch ∉ establishMediaChannel
then

@act1 establishMediaChannel ≔
establishMediaChannel ∪ { ch }

end

event modify
any ch c
where
@grd1 ch ∈ establishMediaChannel
@grd2 ch ∉ close

end

event close
any ch
where
@grd1 ch ∈ establishMediaChannel
@grd2 ch ∉ close
then

@act1 close ≔ close ∪ { ch }
end

TR8

Fig. 6. The Most Abstract Level, Multi Media Protocol

The loop event can execute several times before execution of next event. TR8
transforms the loop constructor to a guard in the loop event, modify. This guard
checks that the event after loop, close, has not executed before, for the intended
channel. The other Event-B elements in Figure 6 are generated via TR1-TR7
which have been described in the previous section (Figure 4).

Solid Line The abstract atomic TC Validation Ok event in Figure 5, is de-
composed to three sub-events in a refinement level. Figure 7 presents the AD
diagram of this decomposition. Validating a received TC is not atomic. It is done
in two steps, checking the syntax, in TCCheck Ok event, and the semantics, in
TCExecute Ok event, of a received TC. After syntax and semantics checks, in
the third step, TCExecOk ReplyCtrlTM event, a control TM is produced and
sent back to the earth.

TC_Validation_Ok (tc)

TCCheck_Ok (tc) TCExecute_Ok (tc) TCExecOk_ReplyCtrlTM (tc)

invariants
@inv1 TCExecute_Ok = TC_Validation_Ok
…

event TCExecute_Ok refines TC_Validation_Ok
…

TR9

TR10

Fig. 7. The AD Diagram of TC Validation Ok, BepiColombo System

Considering Figure 7, a solid line in an AD diagram has two effects. First, it is
translated to an invariant which connects the abstract variable to the refinement
variable (TR9); it is called a gluing invariant. Second, it is translated to an event
which refines the abstract event in the root node (TR10).

xor Constructor Exclusive choice between two or more events is introduced
to the AD diagram with a new constructor called xor. An application of the xor
constructor in BepiColombo development is presented in Figure 8. A TC either
belongs to the core or the device and not both of them. The figure illustrates
a further level of refinement where the atomicity of semantics checking event,
TCExecute Ok, is decomposed to an exclusive choice between two sub-events;
TCCoreExecute Ok event checks the semantics of a TC which belongs to the core
and TCDeviceExecute Ok event checks the semantics of a TC which belongs to
the device.

TCExecute_Ok (tc)

xor

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

invariants
@inv1 partition(TCExecute Ok, TCCore Execute Ok, TCDevice Execute Ok)

event TCCore_Execute_Ok refines
TCExecute_Ok

any tc
where
@grd1 tc ∈ TCCheck_Ok
@grd2 tc ∉ TCCore_Execute_Ok
@grd3 tc ∉∉∉∉ TCDevice_Execute_Ok

then
@act1 TCCore_Execute_Ok ≔

TCCore_Execute_Ok ∪ {tc}
end

event TCDevice_Execute_Ok refines
TCExecute_Ok

any tc
where
@grd1 tc ∈ TCCheck_Ok
@grd2 tc ∉ TCDevice_Execute_Ok
@grd3 tc ∉∉∉∉ TCCore_Execute_Ok

then
@act1 TCDevice_Execute_Ok ≔

TCDevice_Execute_Ok ∪ {tc}
end

TR11

TR12 TR12

Fig. 8. The AD Diagram of TC Execute Ok, BepiColombo System

xor sub-leaves inherit the type of their line (solid/dashed) from the xor con-
structor. Considering Figure 8, the xor constructor is connected to the root node
with a solid line, therefore both xor sub-leaves are connected with solid lines and
refine the abstract event in the root node.

There are two translation rules for the xor constructor. First the xor construc-
tor is transformed to the partitioning invariant (TR11), which ensures exclusivity
of execution. The partition operator in Event-B is defined as follows:

partition(E0, E1, ..., En) ≡ (E0 = E1 ∪ ... ∪ En) ∧ (i 6= j ⇒ Ei ∩ Ej = ∅)
The generated partitioning invariant first describes the relationship between

the abstract variable and the refinement variables:
TCExecute Ok = TCCoreExecute Ok ∪ TCDeviceExecute Ok.
Second it described the mutually exclusive property of the the xor sub-events:
TCCoreExecute Ok ∩ TCDeviceExecute Ok = ∅.

The second translation rule (TR12) generates a guard for each xor sub-event.
This guard describes the exclusiveness property of xor sub-events. The guard in
each xor sub-even, checks that the other xor sub-events have not occurred for
the intended value of the TC.

one Constructor The one constructor specifies execution of an event for ex-
actly one instance value of a new parameter. An application of one constructor
in BepiColombo development is presented in Figure 9. Figure 9 illustrates that
the TCExecOk ReplyCtrlTM event is decomposed to produce exactly one TM,
in the TCExecOk ProcessCtrlTM event, followed by the completion action,
TCExecOk CompleteCtrlTM event.

invariants
@inv1 ∀∀∀∀tc· card(TCExecOk_ProcessCtrlTM [{tc}]) ≤ 1

event TCExecOk_ProcessCtrlTM
any tc tm
where
…
@grd1 tc ∉ dom(TCExecOk_ProcessCtrlTM)

then
@act1 TCExecOk_ProcessCtrlTM ≔

TCExecOk_ProcessCtrlTM ∪ { tc ↦ tm }
end

TR13

TR14

TCExecOk_ReplyCtrlTM (tc)

TCExecOk_ProcessCtrlTM (tc, tm) TCExecOk_CompleteCtrlTM (tc)

one(tm)

Fig. 9. The AD Diagram of TCExecOk ReplyCtrlTM, BepiColombo System

As presented in Figure 9, the one constructor adds a new parameter, the
tm parameter, to its sub-event, TCExecOk ProcessCtrlTM. For each validated
tc, exactly one control tm should be processed. To enforce this constraint, the
one constructor is translated to an invariant and a guard. TR13 generates an
invariant which defines the one constructor property describing that for each tc,
the cardinality of the set of processed tms is at most one. And TR14 generated a
guard to make sure that the one sub-event has not executed for the same value
of intended tc before.

There are two more constructors, all and some, which adds a new parameter
to their sub-events. The all constructor specifies execution of an event for all

instance values of a new parameter. And the some constructor specifies execution
of an event for some instance values of a new parameter. In this paper, we skip
define them in depth.

Using the formal description of ADL, presented in in Figure 3, the transla-
tion rules outlined in Figure 4, can be defined formally. For instance, the formal
description of TR1 is presented in Figure 10. The left box contains the AD ele-
ment description that transformed to the right box containing the description of
the Event-B element. In the case of TR1, each leaf (not loop leaf) is transformed
to a variable (with same name as the leaf) in destination Event-B model.

AD Language

leaf (leaf-name)

xor (…, leaf(leaf-name), ...)

one (pi , leaf(leaf-name))

Event-B Language

variables leaf-name
TR1

Fig. 10. TR1 Definition

4 Tool Support

Eclipse [23], is a multi-language software development environment comprising
an integrated development environment (IDE) and an extensible plug-in system.
The Rodin platform is an Eclipse-based IDE for Event-B and is further extend-
able with plug-ins. By taking advantage of the extensibility feature of the Rodin
platform for Event-B, we have developed a plug-in as tool support for the AD
approach. The AD plug-in helps developers to build Event-B models more easily,
since the AD plug-in addresses automatic generation of the Event-B models in
term of control flows and refinement relationships. The AD plug-in allows users
to define the AD diagram; then the AD diagram is automatically transformed
to an Event-B model.

The development architecture is briefly presented in Figure 11. We define the
ADL specification in an EMF (Eclipse Modelling Framework) [24] meta-model,
called source meta-model, and then the source meta-model is transformed to the
Event-B EMF meta-model as the target meta-model. Currently AD diagrams
are build as an EMF model, included in an Event-B machine. However we con-
sider developing a graphical environment for the plug-in as future work. The
transformation is done using the Epsilon Transformation Language (ETL) [25].
ETL is a rule-based model-to-model transformation language.

AD EMF

Meta-model

Event-B EMF

Meta-model
ETL Rules

Fig. 11. AD Tool Support Architecture

The ETL rule for TR1 (presented in Section 3.2) is as follow:

rule Leaf2Varibale
transform l : Source!Leaf
to v : Target!Variable {
v.name := l.name; }

This rule transforms a leaf from the ADL meta-model (as the source meta-
model) to a variable in the Event-B meta-model (as the target meta-model). In
the body of rule the name of the target component (variable) is assigned to the
name of the source component (leaf).

5 Evaluation
Our AD tool addresses automatic generation of control flow in Event-B mod-
elling. Moreover using the AD plug-in to create the Event-B model of a system,
ensures a consistent encoding of the AD diagrams in a systematic way. The man-
ually generated Event-B models are less systematic and less consistent, since on
the time of developing them our experience of AD applications were not enough.
The versions of the case studies reported in this paper are referred to as au-
tomatically generated models. We applied the tool to the two case studies and
compared the automatic models with the manual models, reported in our earlier
works. There are some differences between the automatic models and the manual
models, which some of the more notable ones are described in this Section.

5.1 Naming Protocol

In the automatic Event-B models (like Figure 5), each control variable has the
same name as the corresponding event name. Whereas in the manual Event-B
models, there was no specific naming protocol for variables name. Providing a
unique naming protocol helps to understand the model more easily, and can help
to track the ordering between events more easily.

5.2 Alternative Approaches of Control Flow Modelling in Event-B

There are different approaches to model control flow in Event-B. In the automatic
Event-B model, we adopted the subset approach to model ordering between
sequential events. Considering Figure 5, the second control variable is a subset
of the first one (inv1). The alternative way is disjoint sets. The Event-B model
of disjoint sets for the diagram in Figure 5 is presented in Figure 12. In this
way the parameter tc is removed from ReceiveTC set variable in the body of
TC Validation Ok event.

event ReceiveTC
any tc
where

@grd1 tc ∉ ReceiveTC
then

@act1 ReceiveTC ≔ ReceiveTC ∪ {tc}
end

event TC_Validation_Ok
any tc
where

@grd1 tc ∈ ReceiveTC
then

@act1 ReceiveTC ≔≔≔≔ ReceiveTC / {tc}
@act2 TC_Validation_Ok ≔ TC_Validation_Ok ∪ {tc}

end

Fig. 12. Disjoint Sets in the Most Abstract Level, BepiColombo System

One of the advantages of using the subset relationships in the Event-B mod-
els, is that the subset relationships between the control variables that represent

different states of the model can be specified in the invariants of the model.
Considering Figure 5, invariant inv2 specifies the ordering relationship between
control variables. This ensures that the orderings are upheld in the Event-B
model more strongly than if specified only in the event guards. Moreover, hav-
ing disjoint set variables would not allow us to model some of the constructors
in a simple way as subset variables provide.

5.3 A Merged Guard versus Separate Guards

Considering the automatic Event-B model in Figure 5, there is a separate guard
for each predicate (grd1 and grd2 in the TC Validation Ok event). These sepa-
rate guards are generated as a result of different translation rules (TR5 and TR6
respectively). Whereas in the manual Event-B model, we modeled all of the pre-
condition predicates in a single guard. For instance, guards of TC Validation Ok
event in Figure 5, can be merged as a single guard
(tc ∈ ReceiveTC \ TC V alidation Ok).

To verify the correctness and consistency of an Event-B model, some proof
obligations are generated by Rodin provers. Some of the generated proof obli-
gations are related to the guards verification. Proving such proof obligations
generated for the manual Event-B models needs more effort comparing to the
proof obligations generated for the automatic Event-B models, since the corre-
sponding separated guards are simpler predicates compared to a merged guard.

6 Conclusion

In the previous publications we have demonstrated how the atomicity decompo-
sition (AD) approach provides a means of introducing explicit flow control into
Event-B development process. In this paper, we have presented the formal de-
scription of the atomicity decomposition language (ADL) and translation rules
from the ADL to the Event-B language. We have developed a tool, supporting
the atomicity decomposition methodology; the tool support is developed as a
plug-in for the Event-B tool-set, Rodin. A brief description of AD tool devel-
opment has been illustrated. Using translation rules developed in the AD tool,
has helped us to develop the models of the previous case studies in an auto-
matic way. Compared to the previous manual models of the case studies, the
recent automatic models are more consistent and systematic. Some aspects of
this improvement have been outlined.

The current AD tool does not provide a graphical environment of AD di-
agrams. Instead an AD diagram is represented as an EMF model that is ma-
nipulated using an EMF structure editor. We consider developing a graphical
environment of AD diagrams as future work. Also future work is needed in order
to improve the ADL and translation rules. For this reason, further applications
of the AD approach using the AD tool is considered as future work.

References

1. Jean-Raymond Abrial: Modeling in Event-B: System and Software Engineering.
Cambridge University Press, (2010)

2. Jean-Raymond Abrial: The B-book: Assigning Programs to Meanings. Cambridge
University Press, (1996)

3. Jean-Raymond Abrial: Refinement, Decomposition and Instantiation of Discrete
Models. In Abstract State Machines, pages 17-40, (2005)

4. Michael Butler: csp2B: A Practical Approach to Combining CSP and B. Formal
Aspects of Computing, vol. 12, pp. 182-196, ISSN 0934-5043, (2000)

5. Alexei Iliasov: On Event-B and Control Flow. Technical Report, School of Com-
puting Science, Newcastle University, (2009)

6. Michael J. Butler: Decomposition Structures for Event-B. In IFM2009, volume
LNCS 5423. Springer, (2009)

7. M.A Jackson: System Development. Prentice-Hall, Englewood Cliffs (1983)
8. Pamela Zave and Eric Cheung: Compositional Control of IP Media. IEEE Trans.

Software Eng., 35(1):46–66, (2009)
9. ESA Media Center, Space Science. Factsheet: Bepicolombo.

http://www.esa.int/esaSC (2008)
10. Asieh Salehi Fathabadi and Michael J. Butler: Applying Event-B Atomicity De-

composition to a Multi Media Protocol. In FMCO Formal MEthods for Components
and Objects, pages 89-104, (2010)

11. Asieh Salehi Fathabadi, Abdolbaghi Rezazadeh and Michael J. Butler: Applying
Atomicity and Model Decomposition to a Space Craft System in Event-B. In NASA
Formal Methods, pages 328-342, (2011)

12. C. Metayer, J-R Abrial and L. Voisin: Event-B language. RODIN Project Deliv-
erable 3.2. http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, (2005)

13. Ralph-Johan Back and Reino Kurki-Suonio: Distributed Cooperation with Action
Systems. ACM Trans. Program. Lang. Syst., pages 513-554, (1988)

14. Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta and Laurent Voisin: Rodin: An Open Toolset for Modelling and
Reasoning in Event-B. STTT, valume 12, pages 447-466, (2010)

15. Jim Woodcock and Ana Cavalcanti: The Semantics of Circus. ZB2002, pages
184-203 (2002)

16. C. A. R. Hoare: Communicating Sequential Processes. Prentice Hall. ISBN 0-13-
153289-8, (1985)

17. Jim Davies and Jim Woodcock Using Z: Specification, Refinement and Proof.
Prentice Hall International Series in Computer Science. ISBN 0-13-948472-8, (1996)

18. S. Schneider and H. Treharne: Verifying Controlled Components. In In Proc IFM,
Springer, pp. 87-107, (2004)

19. Steve Schneider, Helen Treharne and Heike Wehrheim: A CSP Approach to Control
in Event-B. IFM, pages 260-274, (2010)

20. M. Y. Said, M. Butler and C. Snook: Language and Tool Support for Class and
State Machine Refinement in UML-B. In: FM2009 - 16th International Symposium
on Formal Methods, Eindhoven. pp. 579-595, 2-6th November (2009)

21. Alexei Iliasov: Tutorial on the Flow plugin for Event-B. Workshop on B Dissemi-
nation [WOBD] Satellite event of SBMF, Natal, Brazil, (2010)

22. Crocker, D. and Overell, P.: Augmented BNF for Syntax Specifications: ABNF.
STD 68, RFC 5234, (2008)

23. Eclipse [Online] http://www.eclipse.org
24. Dave Steinberg, Frank Budinsky, Marcelo Paternostro and Ed Merks: EMF: Eclipse

Modeling Framework Published by Addison-Wesley Professional Second Edition
Part of the Eclipse Series series, (2008)

25. Dimitrios Kolovos, Louis Rose and Richard Paige: The Epsilon Book
http://www.eclipse.org/gmt/epsilon/doc/book, (2008)

