Skip to main content

Comparing Different Operators and Models to Improve a Multiobjective Artificial Bee Colony Algorithm for Inferring Phylogenies

  • Conference paper
Theory and Practice of Natural Computing (TPNC 2012)

Abstract

Maximum parsimony and maximum likelihood approaches to phylogenetic reconstruction were proposed with the aim of describing the evolutionary history of species by using different optimality principles. These discrepant points of view can lead to situations where discordant topologies are inferred from a same dataset. In recent years, research efforts in Phylogenetics try to apply multiobjective optimization techniques to generate phylogenetic topologies which suppose a consensus among different criteria. In order to generate high quality topologies, it is necessary to perform an exhaustive study about topological search strategies as well as to decide the most fitting molecular evolutionary model in agreement with statistical measurements. In this paper we report a study on different operators and models to improve a Multiobjective Artificial Bee Colony algorithm for inferring phylogenies according to the parsimony and likelihood criteria. Experimental results have been evaluated using the hypervolume metrics and compared with other multiobjective proposals and state-of-the-art phylogenetic software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swofford, D., Olsen, G., Waddell, P., Hillis, D.: Phylogenetic Inference. Molecular Systematics 2, 407–514 (1996)

    Google Scholar 

  2. Felsenstein, J.: Inferring phylogenies. Sinauer Associates, Sunderland (2004) ISBN: 0-87893-177-5

    Google Scholar 

  3. Matsuda, H.: Construction of phylogenetic trees from amino acid sequences using a genetic algorithm. In: Proceedings of Genome Informatics Workshop, pp. 19–28. Universal Academy Press (1995)

    Google Scholar 

  4. Lewis, P.O.: A Genetic Algorithm for Maximum-Likelihood Phylogeny Inference Using Nucleotide Sequence Data. Molecular Biology and Evolution 15(3), 277–283 (1998)

    Article  Google Scholar 

  5. Congdon, C.: GAPHYL: An evolutionary algorithms approach for the study of natural evolution. In: Genetic and Evolutionary Computation Conference, pp. 1057–1064 (2002)

    Google Scholar 

  6. Cotta, C., Moscato, P.: Inferring Phylogenetic Trees Using Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN VII. LNCS, vol. 2439, pp. 720–729. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Bos, D.H., Posada, D.: Using models of nucleotide evolution to build phylogenetic trees. Developmental and Comparative Immunology 29, 211–227 (2005)

    Article  Google Scholar 

  8. Rokas, A., Williams, B.L., King, N., Carroll, S.B.: Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960), 798–804 (2003)

    Article  Google Scholar 

  9. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester (2001) ISBN: 978-0-471-87339-6

    MATH  Google Scholar 

  10. Poladian, L., Jermiin, L.: Multi-Objective Evolutionary Algorithms and Phylogenetic Inference with Multiple Data Sets. Soft Computing 10(4), 359–368 (2006)

    Article  Google Scholar 

  11. Coelho, G.P., da Silva, A.E.A., Von Zuben, F.J.: Evolving Phylogenetic Trees: A Multiobjective Approach. In: Sagot, M.-F., Walter, M.E.M.T. (eds.) BSB 2007. LNCS (LNBI), vol. 4643, pp. 113–125. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Cancino, W., Delbem, A.C.B.: A Multi-Criterion Evolutionary Approach Applied to Phylogenetic Reconstruction. In: Korosec, P. (ed.) New Achievements in Evolutionary Computation, pp. 135–156. InTech (2010) ISBN: 978-953-307-053-7

    Google Scholar 

  13. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Tech. Rep. TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  14. Schmidt, O., Drake, H.L., Horn, M.A.: Hitherto Unknown [Fe-Fe]-Hydrogenase Gene Diversity in Anaerobes and Anoxic Enrichments from a Moderately Acidic Fen. Applied and Environmental Microbiology 76(6), 2027–2031 (2010)

    Article  Google Scholar 

  15. Pol, D., Siddall, M.E.: Biases in Maximum Likelihood and Parsimony: A Simulation Approach to a 10-Taxon Case. Cladistics 17(3), 266–281 (2001)

    Article  Google Scholar 

  16. Santander-Jiménez, S., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Inferring Phylogenetic Trees Using a Multiobjective Artificial Bee Colony Algorithm. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 144–155. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Snell, Q., Whiting, M., Clement, M., McLaughlin, D.: Parallel Phylogenetic Inference. In: Proceedings of the 2000 ACM/IEEE conference on Supercomputing, Article 35. IEEE Computer Society (2000)

    Google Scholar 

  18. Goëffon, A., Richer, J.M., Hao, J.K.: Progressive Tree Neighborhood Applied to the Maximum Parsimony Problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5, 136–145 (2008)

    Article  Google Scholar 

  19. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: Artificial Bee Colony (ABC) algorithm and applications. Artificial Intelligence Review, 1–37 (2012), doi:10.1007/s10462-012-9328-0

    Google Scholar 

  20. Dutheil, J., Gaillard, S., Bazin, E., Glémin, S., Ranwez, V., Galtier, N., Belkhir, K.: Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinformatics 7, 188–193 (2006)

    Article  Google Scholar 

  21. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O.: New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59(3), 307–321 (2010)

    Article  Google Scholar 

  22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  23. Goloboff, P.A., Farris, J.S., Nixon, K.C.: TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008)

    Article  Google Scholar 

  24. Stamatakis, A.: RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 22(21), 2688–2690 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santander-Jiménez, S., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M. (2012). Comparing Different Operators and Models to Improve a Multiobjective Artificial Bee Colony Algorithm for Inferring Phylogenies. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Theory and Practice of Natural Computing. TPNC 2012. Lecture Notes in Computer Science, vol 7505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33860-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33860-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33859-5

  • Online ISBN: 978-3-642-33860-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics