Skip to main content

SWARMORPH: Morphogenesis with Self-Assembling Robots

  • Chapter
  • First Online:
Morphogenetic Engineering

Abstract

We detail progress towards giving robots the capacity to assemble into appropriate morphologies and to operate as a single entity when physically connected to one another. Our work is conducted on the Swarm-bot robotic platform. We develop low-level control logic to allow inter-robot connections to be formed at particular angles. We develop higher-level control logic to dictate the sequence of these connections so as to form desired morphologies. The high-level logic also allows the robots to make appropriate collective responses to different tasks. We test our morphology generation framework with a series of real-world experiments conducted on up to nine robots. We also do some experiments in a physics-based simulation environment to verify scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By contrast, the approach we present in Sect. 2.6 incorporates the possibility of the exchange of symbolic information between connected s-bots. The resulting system is able to generate arbitrary morphologies.

  2. 2.

    An s-bot cannot distinguish between LEDs belonging to the morphology to which it is currently connected and LEDs on robots in other nearby morphologies. It could therefore happen that a robot executing the Balance rule would wait for a connection slot opened by a nearby robot connected to a different morphology. In this section, we do not address this problem: we consider the formation of only one morphology at a time. However, this issue disappears with the symbolic communication based approach that we present in Sect. 2.6.

  3. 3.

    Instead of introducing symbolic communication to generate arbitrary morphologies (as we do in the next section), an alternative avenue (which we have not pursued) might be to create more morphology-extension rules of the type presented in this section, and thus generate richer morphologies whilst avoiding symbolic communication. Such a research avenue could also encompass formal analysis of the morphologically expressive power of a given set of extension rules, perhaps using a grammar based approach akin to that pursued by Klavins et al. [23].

  4. 4.

    As noted previously, to prevent damage to the robots we used a black surface instead of a gap. This surface presents sensory information to the s-bots’ ground sensors that is almost identical to the sensory information presented by the real gap obstacle.

References

  1. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: a demonstration of the grammatical approach to self-organization. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2644–2651. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  2. Bojinov, H., Casal, A., Hogg, T.: Emergent structures in modular self-reconfigurable robots. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, pp. 1734–1741. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  3. Breivik, J.: Self-organization of template-replicating polymers and the spontaneous rise of genetic information. Entropy 3, 273–279 (2001)

    Article  Google Scholar 

  4. Brown, H.B., Weghe, J.M.V., Bererton, C.A., Khasla, P.K.: Millibot trains for enhanced mobility. IEEE/ASME Trans. Mechatron. 7(4), 452–461 (2002)

    Article  Google Scholar 

  5. Brown, H.B., Weghe, M.V., Bererton, C., Khosla, P.: Millibot trains for enhanced mobility. IEEE/ASME Trans. Mechatron. 7(4), 452–461 (2002)

    Article  Google Scholar 

  6. Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-based self-reconfigurable robots. Int. J. Robot. Res. 23(9), 919–937 (2004)

    Article  Google Scholar 

  7. Castano, A., Behar, A., Will, P.M.: The Conro modules for reconfigurable robots. IEEE/ASME Trans. Mechatron. 7(4), 403–409 (2002)

    Article  Google Scholar 

  8. Castano, A., Shen, W.M., Will, P.: CONRO: towards deployable robots with inter-robots metamorphic capabilities. Auton. Robots 8(3), 309–324 (2000)

    Article  Google Scholar 

  9. Christensen, A.L.: Efficient neuro-evolution of hole-avoidance and phototaxis for a swarm-bot. Mémoire de DEA, technical report TR/IRIDIA/2005-14, Université Libre de Bruxelles, Bruxelles, Belgium (2005)

    Google Scholar 

  10. Christensen, A.L., O’Grady, R., Dorigo, M.: Morphology control in multirobot system. IEEE Robot. Autom. Mag. 14(4), 18–25 (2007)

    Article  Google Scholar 

  11. Christensen, A.L., O’Grady, R., Dorigo, M.: SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intell. 2(2–4), 143–165 (2008)

    Article  Google Scholar 

  12. Christensen, A.L., O’Grady, R., Dorigo, M.: Parallel task execution, morphology control and scalability in a swarm of self-assembling robots. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, Robótica 2009, pp. 127–133. IPCB-Instituto Polit écnico de Castelo Branco, Castelo Branco, Portugal (2009)

    Google Scholar 

  13. Damoto, R., Kawakami, A., Hirose, S.: Study of super-mechano colony: concept and basic experimental set-up. Adv. Robot. 15(4), 391–408 (2001)

    Article  Google Scholar 

  14. Dorigo, M.: The swarmanoid project. http://www.swarmanoid.org (2009)

  15. Fukuda, T., Buss, M., Hosokai, H., Kawauchi, Y.: Cell structured robotic system CEBOT: control, planning and communication methods. Robot. Autonom. Syst. 7(2–3), 239–248 (1991)

    Article  Google Scholar 

  16. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22(6), 1115–1130 (2006)

    Article  Google Scholar 

  17. Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)

    Article  Google Scholar 

  18. Hirose, S., Shirasu, T., Fukushima, E.F.: Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robots Auton. Syst. 17(1–2), 107–118 (1996)

    Article  Google Scholar 

  19. Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: analogy with chemical kinetics. Artif. Life 1(4), 413–427 (1994)

    Article  Google Scholar 

  20. Jones, C., Matarić, M.J.: From local to global behavior in intelligent self-assembly. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, ICRA’03, vol. 1, pp. 721–726. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  21. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans. Mechatron. 10(3), 314–325 (2005)

    Article  Google Scholar 

  22. Kawauchi, Y., Inaba, M., Fukuda, T.: A principle of distributed decision making of celluar robotic system (CEBOT). In: Proceedings of the 1993 IEEE International Conference on Robotics and Automation, pp. 833–838. IEEE Press, Piscataway (1993)

    Google Scholar 

  23. Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing robotic systems. IEEE Trans. Autom. Control 51(6), 949–962 (2006)

    Article  MathSciNet  Google Scholar 

  24. Mathews, N., Christensen, A.L., Ferrante, E., O’Grady, R., Dorigo, M.: Establishing spatially targeted communication in a heterogeneous robot swarm. In: Proceedings of 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 939–946. International Foundation for Autonomous Agents and Multiagent Systems (2010)

    Google Scholar 

  25. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.V., Floreano, D., Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: a new distributed robotic concept. Auton. Robots 17(2–3), 193–221 (2004)

    Article  Google Scholar 

  26. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)

    Article  Google Scholar 

  27. Mytilinaios, E., Desnoyer, M., Marcus, D., Lipson, H.: Designed and evolved blueprints for physical self-replicating machines. In: Proceedings of the 9th International Conference on the Simulation and Synthesis of Living Systems (Artificial Life IX), pp. 15–20. MIT Press, Massachusetts (2004)

    Google Scholar 

  28. O’Grady, R., Christensen, A.L., Dorigo, M.: SWARMORPH: multi-robot morphogenesis using directional self-assembly. IEEE Trans. Robot. 25(3), 738–743 (2009)

    Article  Google Scholar 

  29. O’Grady, R., Christensen, A.L., Dorigo, M.: Swarmorph: morphogenesis with self-assembling robots—supplementary online material. http://iridia.ulb.ac.be/supp/IridiaSupp2010-002 (2010)

  30. O’Grady, R., Pinciroli, C., Christensen, A.L., Dorigo, M.: Supervised group size regulation in a heterogeneous robotic swarm. In: 9th Conference on Autonomous Robot Systems and Competitions, Robótica 2009, pp. 113–119. IPCB-Instituto Polit écnico de Castelo Branco, Castelo Branco, Portugal (2009)

    Google Scholar 

  31. Payne, K., Salemi, B., Will, P., Shen, W.M.: Sensor-based distributed control for chain-typed self-reconfiguration. In: C-IROS-2004, vol. 2, pp. 2074–2080 (2004)

    Google Scholar 

  32. Penrose, L.S., Penrose, R.: A self-reproducing analogue. Nature 179(4571), 1183 (1957)

    Article  Google Scholar 

  33. Rus, D., Vona, M.: Self-reconfiguration planning with compressible unit modules. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, ICRA’03, vol. 4, pp. 2513–2520. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  34. Rus, D., Vona, M.: Crystalline robots: Self-reconfiguration with compressible unit modules. Auton. Robots 10(1), 107–124 (2001)

    Article  MATH  Google Scholar 

  35. Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3636–3641. IEEE Press, Piscataway (2006)

    Google Scholar 

  36. Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.: Multimode locomotion for reconfigurable robots. Auton. Robots 20(2), 165–177 (2006)

    Article  Google Scholar 

  37. Shen, W.M., Will, P., Galstyan, A., Chuong, C.M.: Hormone-inspired self-organization and distributed control of robotic swarms. Auton. Robots 17(1), 93–105 (2004)

    Article  Google Scholar 

  38. Støy, K.: Using cellular automata and gradients to control self-reconfiguration. Robot. Auton. Syst. 54(2), 135–141 (2006)

    Article  Google Scholar 

  39. Støy, K., Nagpal, R.: Self-reconfiguration using directed growth. In: Proceedings of the International Conference on Distributed Autonomous Robot Systems (DARS-04), pp. 1–10. Springer, Berlin(2004)

    Google Scholar 

  40. White, P., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Proceedings of Robotics Science and Systems, pp. 161–168. MIT Press, Cambridge (2005)

    Google Scholar 

  41. White, P.J., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2888–2893. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  42. Yim, M., Duff, D., Roufas, K.: Walk on the wild side. IEEE Robot. Autom. Mag. 9(4), 49–53 (2002)

    Google Scholar 

  43. Yim, M., Duff, D., Roufas, K.D.: Polybot: a modular reconfigurable robot. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation, vol. 1, pp. 514–520. IEEE Press, Piscataway (2000)

    Google Scholar 

  44. Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.B.: Modular reconfigurable robots in space applications. Auton. Robots 14(2–3), 225–237 (2003)

    Article  MATH  Google Scholar 

  45. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  Google Scholar 

  46. Yim, M., Zhang, Y., Duff, D.: Modular robots. IEEE Spectr. Mag. 39(2), 30–34 (2002)

    Article  Google Scholar 

  47. Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2002)

    Article  Google Scholar 

  48. Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H.,, Kokaji, S.: A self-reconfigurable modular robot: reconfiguration planning and experiments. Int. J. Robot. Res. 21(10G11), 903–915 (2002)

    Google Scholar 

  49. Yu, C.H., Nagpal, R.: Sensing-based shape formation on modular multi-robot systems: a theoretical study. In: Proceedings of the 7th Internation Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), pp. 71–78. ACM, New York (2008)

    Google Scholar 

  50. Yu, C.H., Willems, F.X., Ingber, D., Nagpal, R.: Self-organization of environmentally-adaptive shapes on a modular robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2007 (IROS 2007), pp. 2353–2360. IEEE Press, Piscataway (2007)

    Google Scholar 

  51. Zhang, Y., Roufas, K., Eldershaw, C., Yim, M., Duff, D.: Sensor computations in modular self reconfigurable robots. In: Proceedings of the 8th International Symposium on Experimental Robotics, vol. 5, pp. 276–286. Springer, Berlin (2003)

    Google Scholar 

  52. Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7039), 163–164 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to the results presented in this chapter has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement Nr. 246939. Rehan O’Grady and Marco Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are a postdoctoral researcher and a research director, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehan O’Grady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Grady, R., Christensen, A.L., Dorigo, M. (2012). SWARMORPH: Morphogenesis with Self-Assembling Robots. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics