Abstract
We present distributed morphogenesis control strategies in a swarm of robots able to autonomously assemble into 3D symbiotic organisms to perform specific tasks. Each robot in such a system can work autonomously, while teams of robots can self-assemble into various morphologies when required. The idea is to combine the advantages of swarm and self-reconfigurable robotic systems in order to investigate and develop novel principles of development and adaptation for “robotic organisms”, from bio-inspired and evolutionary perspectives. Unlike other modular self-reconfigurable robotic systems, individual robots here are independently mobile and can autonomously dock to each other. The goal is that the robots initially form a certain 2D planar structure and, based on their positions in the body plan, the aggregated “organism” should lift itself to form a 3D configuration, then move and function as a macroscopic whole. It should also be able to disassemble and reassemble into different morphologies to fulfil certain task requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Christensen, A., O’Grady, R., Dorigo, M.: Swarmorph-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intell. 2(2), 143–165 (2008). doi:10.1007/s11721-008-0012-6
Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz R.P. (ed.) Organic Computing, Understanding Complex Systems, vol. 21, pp. 167–199. Springer, Berlin (2008). doi:10.1007/978-3-540-77657-4_8
Gross, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008). doi:10.1109/JPROC.2008.927352
Grushin, A., Reggia, J.A.: Automated design of distributed control rules for the self-assembly of prespecified artificial structures. Robot. Auton. Syst. 56(4), 334–359 (2008). doi:10.1016/j.robot.2007.08.006
Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. Biosystems 98(3), 193–203 (2009). doi:10.1016/j.biosystems.2009.05.003
Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai, J., Havlik, J., Liu, W.: Evolutionary robotics: the next-generation-platform for on-line and on-board artificial evolution. In: Proceedings of IEEE congress on Evolutionary Computation, pp. 1079–1086. Trondheim, Norway (2009). doi:10.1109/CEC.2009.4983066
Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer, Heidelberg (2010)
Liu, W., Winfield, A.: Implementation of an IR approach for autonomous docking in a self-configurable robotics system. In: Kyriacou, T. Nehmzow, U. Melhuish, C. Witkowski, M. (eds.) Proceedings of Towards Autonomous Robotic Systems, pp. 251–258 (2009)
Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system. IEEE Robot. Autom. Mag. 14(4), 56–63 (2007). doi:10.1109/M-RA.2007.908984
Nagpal, R.: Programmable self-assembly: constructing global shape using biologically-inspired local interactions and origami mathematics. Ph.D. Thesis, Massachusetts Institute of Technology (2001)
Rubenstein, M., Payne, K., Will, P., Shen, W.M.: Docking among independent and autonomous conro self-reconfigurable robots. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2877–2882 (2004). doi:10.1109/ROBOT.2004.1307497
Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proceedings of Intenational Conference on Intelligent Robots and Systems, pp. 3636–3641. Beijing, China (2006)
Støy, K.: Using cellular automata and gradients to control self-reconfiguration. Robot. Auton. Syst. 54, 135–141 (2006). doi:10.1016/j.robot.2005.09.017
Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2(2–4), 189–208 (2008). doi:10.1007/s11721-008-0014-4
Werfel, J.: Biologically realistic primitives for engineered morphogenesis. In: the Seventh International Conference on Swarm Intelligence (ANTS2010), pp. 131–142. Springer, Belgium (2010). doi:10.1007/978-3-642-15461-4_12
Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5618–5631. Springer, New York (2009). doi:10.1007/978-0-387-30440-3_334
Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with polybot. IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2002). doi:10.1109/TMECH.2002.806221
Acknowledgments
The SYMBRION project is funded by the European Commission within the work programme Future and Emergent Technologies Proactive under grant agreement no. 216342.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Liu, W., Winfield, A.F.T. (2012). Distributed Autonomous Morphogenesis in a Self-Assembling Robotic System. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-33902-8_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33901-1
Online ISBN: 978-3-642-33902-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)