Skip to main content

A Wearable Plantar Pressure Measurement System: Design Specifications and First Experiments with an Amputee

  • Conference paper
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 194))

Abstract

In this paper, we present a wearable plantar pressure measurement system for locomotion mode recognition. The proposed system is implemented with four force sensors in each shoe to measure different given position pressure. By phase-dependent pattern recognition, we get reliable classification results of the six investigated modes for a below-knee amputee subject. The satisfactory recognition performances show the prospect of the integration of the proposed system with powered prostheses used for lower-limb amputees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexander, I.J., Chao, E.Y., Johnson, K.A.: The assessment of dynamic foot-to-ground contact forces and plantar pressure distribution: a review of the evolution of current techniques and clinical applications. Foot & Ankle 11(3), 152–167 (1990)

    Google Scholar 

  2. Cavanagh, P.R., Hewitt Jr., F.G., Perry, J.E.: In-shoe plantar pressure measurement: a review. The Foot 2(4), 185–194 (1992)

    Article  Google Scholar 

  3. Orlin, M.N., McPoil, T.G.: Plantar pressure assessment. Phys. Ther. 80(4), 399–409 (2000)

    Google Scholar 

  4. Au, S.K., Weber, J., Herr, H.: Powered ankle-foot prosthesis improves walking metabolic economy. IEEE Trans. Robotics 25(1), 51–66 (2009)

    Article  Google Scholar 

  5. Zhu, J., Wang, Q., Wang, L.: PANTOE 1: Biomechanical design of powered ankle-foot prosthesis with compliant joints and segmented foot. In: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, pp. 31–36 (July 2010)

    Google Scholar 

  6. Zhu, J., Wang, Q., Huang, Y., Wang, L.: Adding compliant joints and segmented foot to bio-inspired below-knee exoskeleton. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 605–610 (2011)

    Google Scholar 

  7. Sato, T., Sakaino, S., Ohashi, E., Ohnishi, K.: Walking trajectory planning on stairs using virtual slope for biped robots. IEEE Trans. Ind. Electron. 58(4), 1385–1396 (2011)

    Article  Google Scholar 

  8. Fan, R.E., Culjat, M.O., King, C., Franco, M.L., Boryk, R., Bisley, J.W., Dutson, E., Grundfest, W.S.: A haptic feedback system for lower-limb prostheses. IEEE Trans. Neural. Syst. Rehab. Eng. 16(3), 270–277 (2008)

    Article  Google Scholar 

  9. Bamberg, S.J.M., Carson, R.J., Stoddard, G., Dyer, P.S., Webster, J.B.: The lower extremity ambulation feedback system for analysis of gait asymmetries: preliminary design and validation results. J. Prosthet. Orthot. 22(1), 31–36 (2010)

    Article  Google Scholar 

  10. Chen, M., Huang, B., Xu, Y.: Intelligent shoes for abnormal gait detection. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2019–2024 (May 2008)

    Google Scholar 

  11. Veltink, P.H., Liedtke, C., Droog, E., van der Kooij, H.: Ambulatory measurement of ground reaction forces. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 423–427 (2005)

    Article  Google Scholar 

  12. Yuan, K., Zhu, J., Wang, Q., Wang, L.: Finite-state control of powered below-knee prosthesis with ankle and toe. In: Proc. 18th IFAC World Congress, pp. 2865–2870 (August 2011)

    Google Scholar 

  13. Huang, B., Chen, M., Shi, X., Xu, Y.: Gait event detection with intelligent shoes. In: Proc. IEEE Int. Conf. Inf. Acquisition, pp. 579–584 (July 2007)

    Google Scholar 

  14. Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D.D., Tao, X., Tao, X.: In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 14(3), 767–775 (2010)

    Article  Google Scholar 

  15. Kong, K., Tomizuka, M.: A gait monitoring system based on air pressure sensors embedded in a shoe. IEEE Trans. Mechatronics 14(3), 358–370 (2009)

    Article  Google Scholar 

  16. Wen, J., Ding, Q., Yu, Z., Sun, W., Wang, Q., Wei, K.: Adaptive changes of foot pressure in hallux valgus patients. Gait Posture (in press, 2012), doi:10.1016/j.gaitpost.2012.03.030

    Google Scholar 

  17. Huang, H., Kuiken, T.A., Lipschutz, R.D.: A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Biomed. Eng. 56(1) (January 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Wang, Q., Zheng, E., Wei, K., Wang, L. (2013). A Wearable Plantar Pressure Measurement System: Design Specifications and First Experiments with an Amputee. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33932-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33932-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33931-8

  • Online ISBN: 978-3-642-33932-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics