Skip to main content

Minimalist CPG Model for Inter- and Intra-limb Coordination in Bipedal Locomotion

  • Conference paper
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 194))

Abstract

Inter- and intra-limb coordination for bipedal locomotion were numerically investigated using a “minimalist” bipedal robot model and an unconventional central pattern generator (CPG)-based control scheme that exploits local sensory feedback generated from the discrepancy between the control system, mechanical system, and environment. The simulation results showed that a bipedal robot controlled by the proposed controller exhibits walking and running gaits dependent only on one parameter: the angular velocity of the oscillators. Interestingly, spontaneous inter- and intra-limb coordination were found to be inherent to the proposed design scheme for stable bipedal locomotion. These findings are expected to lead to a useful methodology for robots to generate stable and adaptive locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shik, M.L., Severin, F.V., Orlovskii, G.N.: Control of Walking and Running by Means of Electrical Stimulation of the Midbrain. Biophysics 11, 756–765 (1966)

    Google Scholar 

  2. Grillner, S.: Neurobiological Bases of Rhythmic Motor Acts in Vertebrates. Science 228, 143–149 (1985)

    Article  Google Scholar 

  3. Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized Control of Bipedal Locomotion by Neural Oscillators. Biological Cybernetics 65, 147–159 (1991)

    Article  MATH  Google Scholar 

  4. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts. Int. J. Robotics Res. 22, 187–202 (2003)

    Article  Google Scholar 

  5. Aoi, S., Tsuchiya, K.: Stability Analysis of a Simple Walking Model Driven by an Oscillator with a Phase Reset Using Sensory Feedback. IEEE Transactions on Robotics 22, 391–397 (2006)

    Article  Google Scholar 

  6. Righetti, L., Ijspeert, A.J.: Pattern Generators with Sensory Feedback for the Control of Quadruped Locomotion. In: Proc. of ICRA 2008, pp. 819–824 (2008)

    Google Scholar 

  7. Diedrich, F.J., Warren, W.H.: Why Change Gaits? Dynamics of the Walk-Run Transition. Journal of Experimental Psychology 21, 183–202 (1995)

    Google Scholar 

  8. McGeer, T.: Passive bipedal running. Proc. of the Royal Society of London, Series B, Biological Science 240, 107–134 (1990)

    Article  Google Scholar 

  9. Owaki, D., Osuka, K., Ishiguro, A.: On the embodiment that enables passive dynamic bipedal running. In: Proc. of ICRA 2008, pp. 341–346 (2008)

    Google Scholar 

  10. Umedachi, T., Takeda, K., Nakagaki, T., Kobayashi, R., Ishiguro, A.: Fully Decentralized Control of a Soft-bodied Robot Inspired by True Slime Mold. Biological Cybernetics (2010), doi:10.1007/s00422-010-0367-9

    Google Scholar 

  11. Poppele, R.E., Bosco, G., Rankin, A.M.: Independent Representations of Limb Axis Length and Orientation in Spinocerebellar Response Components. J. Neurophysiol. 87, 409–422 (2002)

    Google Scholar 

  12. Sato, T., Kano, T., Ishiguro, A.: On the Applicability of the Decentralized Control Mechanism Extracted from the True Slime Mold: A Robotic Case Study with a Serpentine Robot. Bioinspiration and Biomimetics 6 (2010), doi:10.1088/1748-3182

    Google Scholar 

  13. Kano, T., Nagasawa, K., Owaki, D., Tero, A., Ishiguro, A.: A CPG-based Decentralized Control of a Quadruped Robot Inspired by True Slime Mold. In: Proc. of IROS 2010, pp. 4928–4933 (2010)

    Google Scholar 

  14. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press (2006)

    Google Scholar 

  15. Alexander, R.M.: Walking and Running. American Scientist 72, 348–354 (1984)

    Google Scholar 

  16. Keller, T.S., Weisberger, A.M., Ray, J.L., Hasan, S.S., Shiavi, R.G., Spengler, D.M.: Relationship between Vertical Ground Reaction Force and Speed during Walking, Slow Jogging, and Running. Clinical Biomechanics 11, 253–259 (1996)

    Article  Google Scholar 

  17. Pandy, M.G.: Simple and Complex Models for Studying Muscle Function in Walking. Philosophical Transactions of the Royal Society of London Series B 358, 1501–1509 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Owaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Owaki, D., Kano, T., Tero, A., Akiyama, M., Ishiguro, A. (2013). Minimalist CPG Model for Inter- and Intra-limb Coordination in Bipedal Locomotion. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33932-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33932-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33931-8

  • Online ISBN: 978-3-642-33932-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics