Skip to main content

Dynamic Modeling and Computer Simulation of 3D Objects Grasping

  • Conference paper
Soft Computing Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 195))

  • 1969 Accesses

Abstract

Among the essentials functionalities of several robotic systems are grasping and manipulating of objects by multi-fingered robot hands. Therefore many researchers have studied features of the two major closely related tasks.

In this paper, we consider the problem of mathematical modeling of the robotic hand, the object and the physical interactions between the object and fingers under sliding constraints.

Development of a numerical simulator for 3-D object grasping and manipulation by multi-fingered robot hands is an active area in robotic field. By integrating the derived Lagrange’s equations of motion of the fingers and object under sliding constrains in the 3D simulator HandGrasp that is designed and developed at REGIM (Laboratory of REsearch Group on Intelligent Machine), numerical simulation results of 3-D object pinching and manipulation based on the impedance control law. This simulation results show the validity of mathematical modeling and the control method

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, A., Allen, P.K.: Graspit!: A Versatile Simulator for Robotic Grasping. IEEE Robotics and Automation Magazine 11(4), 110–122 (2004)

    Article  Google Scholar 

  2. Awaad, I., Leon, B.: XPERSim: A Simulator for Robot Learning by Experimentation. In: Proceedings of the 1st International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 5–16 (2008)

    Google Scholar 

  3. Peña-Pitarch, E., Yang, J., Abdel-Malek, K.: Virtual Human Hand: Grasping and Simulation. In: Proceedings of the 2nd International Conference on Digital Human Modeling: Held as Part of HCI International, pp. 140–149 (July 2009)

    Google Scholar 

  4. Boughdiri, R., Bezine, H., M’Sirdi, N.K., Naamane, A., Alimi, A.M.: Dynamic modeling of a multi-fingered robot hand in free motion. In: International Multi-Conference on Systems, Signals & Devices, SSD 2011, pp. 1–7 (2011)

    Google Scholar 

  5. Hogan, N.: Impedance control: An approach to manipulation, parts I-III. ASME Journal of Dynamic Systems, Measurement, and Control 107(1), 1–24 (1985)

    Article  MATH  Google Scholar 

  6. Yoshikawa, T., Sugie, T., Tanaka, M.: Dynamic hybrid control of robot manipulators: controller design and experiment. IEEE Journal of Robotics and Automation 4(6), 699–705 (1988)

    Article  Google Scholar 

  7. Kawasaki, H., Ueki, S., Ito, S.: Decentralized adaptive coordinated control of multiple robot arms without using a force sensor. Automatica 42, 481–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ueki, S., Kawasaki, H., Mouri, T.: Adaptive coordinated control of multi-fingered robot hand. Journal of Robotics and Mechatronics 21(1), 36–43 (2009)

    Google Scholar 

  9. Al-Gallaf, E.: Neural network based inverse kinematics for multi-finger hand control. In: IASTED Internat. Conf. in Neural Networks, Pittsburgh, PA, pp. 82–87 (2000)

    Google Scholar 

  10. Dominguez-Lopez, J.A., Vila-Rosado, D.N.: Hierarchical fuzzy control to ensure stable grasping. In: Seventh Mexican International Conference on Computer Science (ENC 2006), pp. 37–43 (2006)

    Google Scholar 

  11. Canudas de Witt, C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer (1996)

    Google Scholar 

  12. Beurier, G.: Modélisation, analyse et contrôle de systèmes mécaniques avec interaction avec l’environnement: Aide à la conduite d’un tunnelier pour un forage en continu., PhD Thesis, UPMC, Paris 6 (1999)

    Google Scholar 

  13. Yoshikawa, T.: Multifingered Robot Hands: Control for Grasping and Manipulation (Review Paper). Annual Reviews in Control 34(2), 199–208 (2010)

    Article  Google Scholar 

  14. Walha, C., Bezine, H., M’sirdi, N.K., Naamane, A., Alimi, A.M.: HandGrasp: a new simulator for human grasping. In: Workshop on Autonomous Grasping at IEEE International Conference on Robotics and Automation, ICRA 2011 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Boughdiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boughdiri, R., Bezine, H., M’Sirdi, N.K., Naamane, A., Alimi, A.M. (2013). Dynamic Modeling and Computer Simulation of 3D Objects Grasping. In: Balas, V., Fodor, J., Várkonyi-Kóczy, A., Dombi, J., Jain, L. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33941-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33941-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33940-0

  • Online ISBN: 978-3-642-33941-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics