Skip to main content

Automated Sleep Staging Using Detrended Fluctuation Analysis of Sleep EEG

  • Conference paper
Soft Computing Applications

Abstract

An accurate sleep staging is crucial for the treatment of sleep disorders. Recently some studies demonstrated that the long range correlations of many physiological signals measured during sleep show some variations during the different sleep stages. In this study, detrended fluctuation analysis (DFA) is used to study the electroencephalogram (EEG) signal autocorrelation during different sleep stages. A classification of these stages is then made by introducing the calculated DFA power law exponents to a K-Nearest Neighbor classifier. Our study reveals that a 2-D feature space composed of the DFA power law exponents of both the filtered THETA and BETA brain waves resulted in a classification accuracy of 94.44%, 91.66% and 83.33% for the wake, non-rapid eye movement and rapid eye movement stages, respectively. We conclude that it might be possible to build an automated sleep assessment system based on DFA analysis of the sleep EEG signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carskadon, M.A., Dement, W.C.: Normal human sleep: An overview. In: Kryger, M.H., Roth, T., Dement, W.C. (eds.) Principles and Practice of Sleep Medicine, vol. 3. Saunders, Philadephia (2000)

    Google Scholar 

  2. Rechtschaffen, A., Kales, A.: A manual of standardized technology, techniques, and scoring system for sleep stages of human subjects. US Public Health Service. U.S. Govt. Printing Office, Washington, DC (1968)

    Google Scholar 

  3. Himanen, S.L., Hasan, J.: Limitations of Rechtscaffen and Kales. Sleep Med. Rev. 4(2), 149–167 (2000)

    Article  Google Scholar 

  4. Hasan, J.: Past and future of computer-assisted sleep analysis and drowsiness assessment. J. Clin. Neurophysiol. 13(4), 295–313 (1996)

    Article  MathSciNet  Google Scholar 

  5. Penzel, T., Conradt, R.: Computer based sleep recording and analysis. Sleep Med. Rev. 4(2), 131–148 (2000)

    Article  Google Scholar 

  6. Penzel, T., Stephan, K., Kubicki, S., Herrmann, W.M.: Integrated sleep analysis, with em-phasis on automatic methods. In: Degen, R., Rodin, E.A. (eds.) Epilepsy, Sleep and Sleep Deprivation, 2nd edn. Epilepsy Res. suppl. 2, pp. 177–200. Elsevier Science Publishers B.V. (1991)

    Google Scholar 

  7. Kemp, B.: A proposal for computer-based sleep/wake analysis. J. Sleep Res. 2, 179–185 (1993)

    Article  MathSciNet  Google Scholar 

  8. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29, 306–310 (1970)

    Article  Google Scholar 

  9. Rezek, I., Roberts, S.: Stochastic complexity measures for physiological signal analysis. IEEE Trans. Biomed. Eng. 45(9), 1186–1191 (1998)

    Article  Google Scholar 

  10. Jobert, M., Schulz, H., Jähnig, P., Tismer, C., Bes, F., Escola, H.: A computerized method for detecting episodes of wakefulness during sleep based on the alpha slow-wave index (ASI). Sleep 17(1), 37–46 (1994)

    Google Scholar 

  11. Dimpfel, W., Hofmann, H.C., Schober, F., Todorova, A.: Validation of an EEG-derived spectral frequency index (SFx) for continuous monitoring of sleep depth in humans. Eur. J. Med. Res. 3, 453–460 (1998)

    Google Scholar 

  12. Hammer, N., Todorova, A., Hofmann, H.C., Schober, F., Vonderheid-Guth, B., Dimpfel, W.: Description of healthy and disturbed sleep by means of the spectral frequency index (SFx)—a retrospective analysis. Eur. J. Med. Res. 6, 333–344 (2001)

    Google Scholar 

  13. Mourtazaev, M.S., Kemp, B., Zwinderman, A.H., Kamphuisen, H.A.C.: Age and gender affect different characteristics of slow waves in the sleep EEG. Sleep 18(7), 557–564 (1995)

    Google Scholar 

  14. Flexer, A., Gruber, G., Dorffner, G.: A reliable probabilistic sleep stager based on a single EEG signal. Artif. Intell. Med. 33(3), 199–207 (2005)

    Article  Google Scholar 

  15. Kaplan, A., Röschke, J., Darkhovsky, B., Fell, J.: Macrostructural EEG characterization based on nonparametric change point segmentation: application to sleep analysis. J. Neurosci. Meth. 106, 81–90 (2001)

    Article  Google Scholar 

  16. Gunes, S., Polat, K., Yosunkaya, S.: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. ELSEVIER, Expert Systems with Applications 37, 7922–7928 (2010)

    Article  Google Scholar 

  17. Jo, H.G., Park, J.Y., Lee, C.K., An, S.K., Yoo, S.K.: Genetic fuzzy classifier for sleep stage identification. ELSEVIER, Computers in Biology and Medicine 40, 629–634 (2010)

    Article  Google Scholar 

  18. Jiang, Z., Ning, Y., An, B., Li, A., Feng, H.: Detecting mental EEG properties using detrended fluctuation analysis. In: 27th Annual Conference on Engineering in Medicine and Biology, Shanghai, China (2005)

    Google Scholar 

  19. Peng, C.K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Sciortino, F., Simons, M.: Fractal landscape analysis of DNA walks. Physica A (1992)

    Google Scholar 

  20. Kantelhardt, J.W., Koscielny-Bunde, E., Rego, H.H.A., Havlin, S., Bunde, A.: Detecting long-range correlations with detrended fluctuation analysis. Physica A 295, 441–454 (2001)

    Article  MATH  Google Scholar 

  21. Penzel, T., Kantelhardt, J.W., Grote, L., Bunde, A.: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 50(10), 1143–1151 (2003)

    Article  Google Scholar 

  22. Peng, C.K., Havlin, S., Stabley, H.E., Goldberg, A.L.: Quantification of scaling exponents and crossover exponents phenomena in non-stationary heartbeat time series. Chaos 5(1), 82–87 (1995)

    Article  Google Scholar 

  23. Kantelhardt, J.W., Penzel, T., Sven R., Becker, H., Havlin, S.: ArminBun Breathing during REM and non-REM sleep: correlated versus uncorrelated behavior. Physica A 319 (2003)

    Google Scholar 

  24. Alpaydın, E.: Introduction to machine learning, 2nd edn. MIT Press, Cambridge (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr F. Farag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farag, A.F., El-Metwally, S.M., Morsy, A.A.A. (2013). Automated Sleep Staging Using Detrended Fluctuation Analysis of Sleep EEG. In: Balas, V., Fodor, J., Várkonyi-Kóczy, A., Dombi, J., Jain, L. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33941-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33941-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33940-0

  • Online ISBN: 978-3-642-33941-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics