Abstract
This paper presents a novel multi-view human action recognition approach based on a bag-of-key-poses. In the case of multi-view scenarios, it is especially difficult to perform accurate action recognition that still runs at an admissible recognition speed. The presented method aims to fill this gap by combining a silhouette-based pose representation with a simple, yet effective multi-view learning approach based on Model Fusion. Action classification is performed through efficient sequence matching and by the comparison of successive key poses which are evaluated on both feature similarity and match relevance. Experimentation on the MuHAVi dataset shows that the method outperforms currently available recognition rates and is exceptionally robust to actor-variance. Temporal evaluation confirms the method’s suitability for real-time recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)
Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. Comput. Vis. Image Underst. 115(2), 224–241 (2011)
Holte, M.B., Tran, C., Trivedi, M.M., Moeslund, T.B.: Human action recognition using multiple views: a comparative perspective on recent developments. In: Proceedings of the 2011 Joint ACM Workshop on Human Gesture and Behavior Understanding, J-HGBU 2011, pp. 47–52. ACM, New York (2011)
Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(3), 257–267 (2001)
Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104(2), 249–257 (2006)
Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1395–1402 (2005)
Laptev, I.: On space-time interest points. International Journal of Computer Vision 64, 107–123 (2005)
Oikonomopoulos, A., Patras, I., Pantic, M.: Spatiotemporal salient points for visual recognition of human actions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(3), 710–719 (2005)
Scovanner, P., Ali, S., Shah, M.: A 3-dimensional SIFT descriptor and its application to action recognition. In: Proceedings of the 15th International Conference on Multimedia, MULTIMEDIA 2007, pp. 357–360. ACM, New York (2007)
İkizler, N., Duygulu, P.: Human Action Recognition Using Distribution of Oriented Rectangular Patches. In: Elgammal, A., Rosenhahn, B., Klette, R. (eds.) Human Motion 2007. LNCS, vol. 4814, pp. 271–284. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-75703-0_19
Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)
Määttä, T., Härmä, A., Aghajan, H.: On efficient use of multi-view data for activity recognition. In: Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2010, pp. 158–165. ACM, New York (2010)
Wu, C., Khalili, A.H., Aghajan, H.: Multiview activity recognition in smart homes with spatio-temporal features. In: Proceedings of the Fourth ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2010, pp. 142–149. ACM, New York (2010)
Naiel, M.A., Abdelwahab, M.M., El-Saban, M.: Multi-view human action recognition system employing 2DPCA. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV), pp. 270–275 (2011)
Cilla, R., Patricio, M.A., Berlanga, A., Molina, J.M.: A probabilistic, discriminative and distributed system for the recognition of human actions from multiple views. Neurocomputing 75(1), 78–87 (2012); Brazilian Symposium on Neural Networks (SBRN 2010), International Conference on Hybrid Artificial Intelligence Systems (HAIS 2010)
Yan, S.M.P., Khan, Shah, M.: Learning 4D action feature models for arbitrary view action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–7 (2008)
Canton-Ferrer, C., Casas, J.R., Pardas, M.: Human model and motion based 3D action recognition in multiple view scenarios. In: Conf. on 14th European Signal Processing, Italy, pp. 1–5 (2006)
Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985)
Ángeles Mendoza, M., Pérez de la Blanca, N.: HMM-Based Action Recognition Using Contour Histograms. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4477, pp. 394–401. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-72847-4_51
Dedeoğlu, Y., Töreyin, B., Güdükbay, U., Çetin, A.: Silhouette-Based Method for Object Classification and Human Action Recognition in Video. In: Huang, T.S., Sebe, N., Lew, M., Pavlović, V., Kölsch, M., Galata, A., Kisačanin, B. (eds.) HCI/ECCV 2006. LNCS, vol. 3979, pp. 64–77. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11754336_7
Singh, S., Velastin, S.A., Ragheb, H.: Muhavi: A multicamera human action video dataset for the evaluation of action recognition methods. In: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 48–55 (2010)
Cheema, S., Eweiwi, A., Thurau, C., Bauckhage, C.: Action recognition by learning discriminative key poses. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1302–1309 (2011)
Martínez-Contreras, F., Orrite-Urunuela, C., Herrero-Jaraba, E., Ragheb, H., Velastin, S.A.: Recognizing human actions using silhouette-based HMM. In: Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2009, pp. 43–48 (2009)
Eweiwi, A., Cheema, S., Thurau, C., Bauckhage, C.: Temporal key poses for human action recognition. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1310–1317 (2011)
Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chaaraoui, A.A., Climent-Pérez, P., Flórez-Revuelta, F. (2012). An Efficient Approach for Multi-view Human Action Recognition Based on Bag-of-Key-Poses. In: Salah, A.A., Ruiz-del-Solar, J., Meriçli, Ç., Oudeyer, PY. (eds) Human Behavior Understanding. HBU 2012. Lecture Notes in Computer Science, vol 7559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34014-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-34014-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34013-0
Online ISBN: 978-3-642-34014-7
eBook Packages: Computer ScienceComputer Science (R0)