Abstract
We present a novel approach to segment and classify objects in images into two classes. A binary conditional random field (CRF) framework is augmented with an unsupervised clustering step learning contextual relations of objects, the so-called implicit scene context (ISC). Several experiments with simulated data, images from benchmark data sets, and aerial images of an urban area show improved results compared to a standard CRF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liu, D.C., Nocedal, J.: On the Limited Memory BFGS method for large scale optimization. Mathematical Programming 45, 503–528 (1989)
Nocedal, J.: Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computation 35, 773–782 (1980)
Frey, B.J., MacKay, D.J.C.: A Revolution: Belief Trees: Belief Propagation in Graphs With Cycles. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, pp. 479–485. MIT Press, Cambridge (1998)
Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: Probabilistic Models for segmenting and labeling sequence data. In: ICML, p. 8 (2001)
Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)
Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework for contextual interaction in classification. In: ICCV, vol. 2, pp. 1150–1157 (2003)
Kumar, S., Hebert, M.: A Hierarchical Field Framework for Unified Context-Based Classification. In: ICCV, vol. 2, pp. 1284–1291 (2005)
Lim, J.J., Arbelaez, P., Gu, C., Malik, J.: Context by Region Ancestry. In: ICCV, pp. 1978–1985 (2009)
He, X., Zemel, R.S., Carreira-Perpiñán, M.: Multiscale Conditional Random Fields for Image Labeling. In: CVPR, p. 8 (2004)
Crowther, P.S., Cox, R.J.: A Method for Optimal Division of Data Sets for Use in Neural Networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684, pp. 1–7. Springer, Heidelberg (2005)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR, p. 8 (2005)
Torralba, A., Murphy, K.P., Freeman, W.T.: Contextual Models for Object Detection Using Boosted
Savarese, S., Winn, J., Criminisi, A.: Discriminative Object Class Models of Appearance and Shape by Correlatons. In: CVPR, p. 8 (2006)
Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)
Kumar, S., Hebert, M.: Discriminative Random Fields. International Journal of Computer Vision 68(2), 179–201 (2006)
Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: HLT-NAACL, pp. 213–220 (2003)
Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects in Context. In: ICCV, p. 8 (2007)
Oliva, A., Torralba, A.: The role of context in object recognition. Trends in Cognitive Sciences 11(12), 520–527 (2007)
Ball, G.H., Hall, D.J.: A clustering technique for summarizing multivariate data. Systems Research and Behavioral Science 12(2), 153–155 (1967)
Vedaldi, A., Fulkerson, B.: VLFeat: An Open and Portable Library of Computer Vision Algorithms (2008), http://www.vlfeat.org/
Vedaldi, A., Soatto, S.: Quick Shift and Kernel Methods for Mode Seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)
Kohli, P., Ladicky, L., Torr, P.H.S.: Robust Higher Order Potentials for Enforcing Label Consistency. In: CVPR, p. 8 (2008)
Galleguillos, C., McFee, B., Belongie, S., Lanckriet, G.: Multi-Class Object Localization by Combining Local Contextual Interactions. In: CVPR, p. 8 (2010)
Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-Class Segmentation with Relative Location Prior. International Journal of Computer Vision 80(3), 300–316 (2008)
Carbonetto, P., de Freitas, N., Barnard, K.: A Statistical Model for General Contextual Object Recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 350–362. Springer, Heidelberg (2004)
Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Associative Hierarchical CRFs for Object Class Image Segmentation. In: ICCV, p. 8 (2009)
Fulkerson, B., Vedaldi, A., Soatto, S.: Class Segmentation and Object Localization with Superpixel Neighborhoods. In: ICCV, p. 8 (2009)
Wegner, J.D., Rosenhahn, B., Soergel, U.: Implicit Scene Context for Object Segmentation and Classification. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 31–40. Springer, Heidelberg (2011)
Korč, F., Förstner, W.: Interpreting terrestrial images of urban scenes using discriminative random fields. In: ISPRS Symposium Beijing, vol. 37(B3a), pp. 291–296 (2008)
Wegner, J.D., Rosenhahn, B., Soergel, U.: Segment-based building detection with Conditional Random Fields. In: Stilla, U., Juergens, C., Maktav, D. (eds.) 6th IEEE/GRSS/ISPRS Joint Urban Remote Sensing Event, pp. 205–208 (2011)
Munoz, D., Bagnell, J.A., Hebert, M.: Stacked Hierarchical Labeling. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 57–70. Springer, Heidelberg (2010)
Lempitsky, V., Vedaldi, A., Zisserman, A.: A Pylon Model for Semantic Segmentation. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., Weinberger, K.Q. (eds.) NIPS 2011, vol. 24, pp. 1485–1493 (2011)
Korč, F., Förstner, W.: eTRIMS Image Database for Interpreting Images of Man-Made Scenes (2009), http://www.ipb.uni-bonn.de/projects/etrims_db/
Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields for Relational Learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wegner, J.D., Rosenhahn, B., Sörgel, U. (2012). Segmentation and Classification of Objects with Implicit Scene Context. In: Dellaert, F., Frahm, JM., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds) Outdoor and Large-Scale Real-World Scene Analysis. Lecture Notes in Computer Science, vol 7474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34091-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-34091-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34090-1
Online ISBN: 978-3-642-34091-8
eBook Packages: Computer ScienceComputer Science (R0)