Abstract
We introduce an (equi-)affine invariant geometric structure by which surfaces that go through squeeze and shear transformations can still be properly analyzed. The definition of an affine invariant metric enables us to evaluate a new form of geodesic distances and to construct an invariant Laplacian from which local and global diffusion geometry is constructed. Applications of the proposed framework demonstrate its power in generalizing and enriching the existing set of tools for shape analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching. J. ACM 45, 891–923 (1998)
Bérard, P., Besson, G., Gallot, S.: Embedding riemannian manifolds by their heat kernel. Geometric and Functional Analysis 4, 373–398 (1994)
Bronstein, A., Bronstein, M., Kimmel, R.: Efficient computation of isometry-invarient distances between surfaces. SIAM J. Scientific Computing 28(5), 1812–1836 (2006)
Bronstein, A.M., Bronstein, M.M., Castellani, U., Falcidieno, B., Fusiello, A., Godil, A., Guibas, L.J., Kokkinos, I., Lian, Z., Ovsjanikov, M., Patané, G., Spagnuolo, M., Toldo, R.: SHREC 2010: robust large-scale shape retrieval benchmark. In: Proc. 3DOR (2010)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-invariant face recognition via spherical embedding. In: Proc. Int’l Conf. Image Processing (ICIP), vol. 3, pp. 756–759 (2005)
Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Scientific Computing 28, 1812–1836 (2006)
Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances with spectral distances. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 33, 1065–1071 (2011)
Buchin, S.: Affine differential geometry. Science Press, Beijing (1983)
Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate studies in mathematics, vol. 33. American Mathematical Society (2001)
Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21, 5–30 (2006)
Dierkes, U., Hildebrandt, S., Kuster, A., Wohlrab, O.: Minimal Surfaces I. Springer, Heidelberg (1992)
Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations, pp. 142–155 (1988)
Elad, A., Keller, Y., Kimmel, R.: Texture mapping via spherical multi-dimensional scaling. In: Proc. Scale-Space Theories in Computer Vision, pp. 443–455 (2005)
Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. Trans. on Pattern Analysis and Machine Intelligence (PAMI) 25, 1285–1295 (2003)
Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. In: Proc. of the Symposium on Geometry Processing, pp. 1405–1413 (2009)
Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. National Academy of Sciences (PNAS) 95, 8431–8435 (1998)
Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 313–346 (2005)
Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Volumetric heat kernel signatures. In: Proc. 3D Object recognition (3DOR), part of ACM Multimedia (2010)
Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sapiro, G.: Diffusion symmetries of non-rigid shapes. In: Proc. International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT) (2010)
Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace–Beltrami operators for shape analysis and segmentation. Computers & Graphics 33, 381–390 (2009)
Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proc. Symposium on Geometry Processing (SGP), pp. 225–233 (2007)
Schwartz, E.L., Shaw, A., Wolfson, E.: A numerical solution to the generalized mapmaker’s problem: flattening nonconvex polyhedral surfaces. Trans. on Pattern Analysis and Machine Intelligence (PAMI) 11, 1005–1008 (1989)
Sochen, N.: Affine-invariant flows in the Beltrami framework. Journal of Mathematical Imaging and Vision 20, 133–146 (2004)
Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proc. Symposium on Geometry Processing (SGP) (2009)
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S., Hoppe, H.: Fast exact and approximate geodesics on meshes. In: Proc. ACM Transactions on Graphics (SIGGRAPH), pp. 553–560 (2005)
Yatziv, L., Bartesaghi, A., Sapiro, G.: O(N) implementation of the fast marching algorithm. J. Computational Physics 212, 393–399 (2006)
Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automatic Control 40, 1528–1538 (1995)
Ovsjanikov, M., Bronstein, A.M., Bronstein, M.M., Guibas, L.J.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proc. NORDIA (2009)
Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant diffusion geometry of deformable 3D shapes. In: Proc. Computer Vision and Pattern Recognition (CVPR) (2011)
Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant geodesic geometry of deformable 3D shapes. Computers & Graphics 35, 692–697 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N. (2012). Equi-affine Invariant Geometries of Articulated Objects. In: Dellaert, F., Frahm, JM., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds) Outdoor and Large-Scale Real-World Scene Analysis. Lecture Notes in Computer Science, vol 7474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34091-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-34091-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34090-1
Online ISBN: 978-3-642-34091-8
eBook Packages: Computer ScienceComputer Science (R0)