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Abstract. In a partial-monitoring problem in every round a learner
chooses an action, simultaneously an opponent chooses an outcome, then
the learner suffers some loss and receives some feedback. The goal of the
learner is to minimize his (unobserved) cumulative loss. In this paper we
explore a variant of this problem where in every round, before the learner
makes his decision, he receives some side-information. We assume that
the outcomes are generated randomly from a distribution that is influ-
enced by the side-information. We present a “meta” algorithm scheme
that reduces the problem to that of the construction of an algorithm
that is able to estimate the distributions of observations while producing
confidence bounds for these estimates. Two specific examples are shown
for such estimators: One uses linear estimates, the other uses multino-
mial logistic regression. In both cases the resulting algorithm is shown to
achieve O(\/T) minimax regret for locally observable partial-monitoring
games.

1 introduction

Partial monitoring is a framework to model online learning games with arbi-
trary feedback structure. In every time step, a learner chooses an action and
simultaneously an opponent chooses an outcome. Then, the learner suffers some
loss and receives some feedback, both of which are deterministic functions of the
action and the outcome. The loss and feedback functions are both known to the
learner and the opponent and together they define the partial monitoring game.
The goal of the learner is to keep his cumulative loss as low as possible. His
performance is measured in terms of the regret: the learner’s excess cumulative
loss compared to that of the best fixed action in hindsight.

Canonical examples of partial-monitoring include product testing and dy-
namic pricing. In the case of product testing, the learner has to decide to test
or not test products arriving on a production line. The learner receives feedback
about the quality of the product only if he decided to test the product. On the
other hand, he suffers a constant loss in every time step when either a good
product was tested (unable to sell, e.g., when the test means the destruction of
the product) or a bad product was not tested (complaining costumers). In the
case of dynamic pricing, a vendor (learner/he) sets the price of a product while
the consumer (opponent/she) secretly chooses a maximum price she is willing to
buy the product for. In case the sale price is below the consumer-chosen price,



the product is sold. The information received by the learner is the single bit
whether this happens. The loss suffered in a round when the product is sold is
the difference between the consumer-chosen prices and the sale price, while in a
round when the product is not sold a fixed storage cost is incurred.

In this paper we extend the basic partial monitoring problem to allow the
learner to use some side information to make a more informed decision. For
example, in product testing, before deciding about whether to use a potentially
destructive testing procedure the learner can take a look at the product. Sim-
ilarly, in dynamic pricing, the learner may use information available about the
customer (gender, age, etc.) for determining a more competitive price. Formally,
the assumption is that in each round the learner receives the so-called side in-
formation (sometimes also called “a context”) before making a decision. The
side information is not subject to any restrictions, but in this paper we assume
that the outcome for the given round is a stochastically function of the side
information shown to the learner. Then, instead of competing with the single
best action, the learner competes with the oracle that knows the mapping that
maps the side information to the outcome distributions and who makes optimal
decisions given this knowledge.

1.1 Related work

The model of partial monitoring was introduced by Piccolboni and Schindelhauer
[2001]. They designed the algorithm FEEDEXP and showed for any game, either
the worst-case expected regret is linear in the time horizon T', or the algorithm
achieves expected regret of O(T3/%) for any outcome sequence. This upper bound
was later improved to O(T?/?) by Cesa-Bianchi et al. [2006]. In the same paper,
Cesa-Bianchi et al. show that there exists a game whose minimaz regret—the
worst case regret of the best possible algorithm—scales as Q(TQ/ 3). However,
they noted that some games enjoy minimax regret growth rate of 6(\/T ), and
posed the problem of determining exactly which games have minimax regret
rate better than ©(T2/3). This problem was solved in the works of Bartck et al.
[2011] against stochastic opponents, while by providing a new algorithm Fos-
ter and Rakhlin [2011] showed that the classification of games worked out by
Bartdk et al. [2011] continues to hold even against adversarial opponents. Ac-
cording to the solution, partial-monitoring games with a finite number of actions
and outcomes can be classified into four categories based on the growth rate of
the minimax regret: trivial games with minimax regret 0, easy games with min-
imax regret! of O(V/T), hard games with minimax regret ©(T2/3), and hopeless
games with linear minimax regret. The condition that separates easy games from
hard games is the local observability condition (see Definition 2). In the bandit
literature learning with side-information has been considered before under vari-
ous conditions, see Auer [2003], Dudik et al. [2011] and references therein, while
Helmbold et al. [2000] considered a special case of our framework when both
the number of actions and outcomes is two, with one action revealing the actual

! The notations O(-) and O(-) hide polylogarithmic terms.



outcome, while the other action not yielding any information about the outcome,
the hidden relationship between the side information and hidden information is
deterministic and the loss is the zero-one loss.

2 Problem definition

An instance of a partial-monitoring game with side-information is described by
the tuple G = (L, H, F), where L € RN*M is the loss matriz, H € SNV*M ig
the feedback matriz (X is the set of feedback symbols), and F C {f | f: X —
A} is a subset of all functions that map elements from some side-information
set X to the set of outcome distributions. For convenience, we assume that
max;en, jem (Li ;) — minjen jeamr(Li ;) < 1, where for a natural number n € N
we used n to denote the set {1,2,...,n}. The partial-monitoring game proceeds
in turns. Before the first turn, both the learner and the opponent is given G
and the opponent secretly chooses a function f € F. In turn ¢ (¢t = 1,2,...),
first the learner receives the side-information x; € X'. Then, the learner chooses
an action I; € NN, while at the same time the opponent draws an outcome J;
from the distribution f(z;). No stochastic assumption is made about the side
information sequence, {z;} and, in fact, we also allow z; to be chosen based
on the history Hi;—y = (z1,11,J1,. -, x4-1,L1—1,Ji—1). After the learner and
the opponent made their decisions, the learner receives the feedback Hj, j, and
suffers the loss Ly, j,. It is important to emphasize that the loss is not revealed
to the learner.

The goal of the learner is to minimize his cumulative loss given the knowledge
of the game G. His performance is measured in terms of the regret, defined as
the excess cumulative loss he suffers as compared to the expected cumulative loss
of the oracle that knows f and chooses the action with the smallest expected
loss as a function of the side-information in every round. In other words,

T T
Ry = ZLIth, - gIéljl\lI}V ZE[Lg(m),JJHt—lvxt] .
t=1 - t=1

3 Preliminaries

In this section we introduce the necessary notations and definitions that we will
need. Most of the definitions presented here are taken from Barték et al. [2011].

Let G = (L,H,F) be a partial-monitoring game. For an action i, the col-
umn vector ¢; consisting of the elements of the i*" row of L is called the loss
vector of action i. Let the probability simplex of dimension n be denoted by
K, € R™ Thus, the set of all outcome distributions is p;. It is easy to see
that the expected loss of action i at time step ¢ given the past and x; equals
E[L; g, |Hy -1, 2] = €] f().

For an action 4, let the cell of ¢ be the set of outcome distributions under
which action 7 is optimal:

Ci={peKy |VjeEN:(—t)"p<0}.



It is easy to see that for every i € N, C; is either empty or a closed convex poly-
tope, with | J;cy Ci = Kar. We call C = {C1,Cs,...,Cn} the cell decomposition
of ICps. For clarity of presentation, in this paper we only deal with games that
are non-degenerate: for every action i, C; is M — 1 dimensional and for i # j,
Ci # Cj. We remark that our results generalize to degenerate games, but the
algorithm and its analysis are somewhat more involved.

For an action ¢ € N, we define the signal matriz of i as follows:

Definition 1. For an action i, let o, 0, ..., 0., € X be the distinct symbols
in the i*" row of the feedback matriz H. The signal matriz S; € {0,1}7:*M s
defined as the incidence matriz of the i'™ row of the feedback matriz H:

(Si)kt =Lm, =auy -

An important property of the signal matrix 5; is that if p € ICp; is the outcome
distribution chosen by the opponent then S;p is the probability distribution over
the set of observations {aq,...,ax} induced by p under action i. From now on,
without loss of generality, we assume that the feedback at time step ¢ is presented
as the unit vector corresponding to the received symbol Hy, j,. We shall denote
this unit vector by Y;.

If for two actions ¢ and j, dim(C; NC;) = M — 2 we say that ¢ and j are
neighbors. The set of neighboring action pairs is denoted by A. Now we are
ready to recall the local observability condition from Bartdk et al. [2011]:

Definition 2. Let {i,j} € N be two neighboring actions. We say that {i,j}
is locally observable if £; — ¢; € Im(S,") & Im(SjT). The game is called locally
observable (or we say that it satisfies the local observability condition) if every
neighboring action pair is locally observable. For a pair of distinct action {i,j} €
N, a pair of vectors, v; j, vj; is called observer vectors for {i,j} if

T T
Ei — Ej = Sz Ui,j — Sj Uj,i.

If a neighboring action pair is locally observable then the local observability
condition yields the existence of these observer vectors. From now on, for locally
observable neighboring action pairs we shall fix such observer vectors. Note that
the observer vectors are not uniquely defined. We will discuss good choices of
the observer vectors later on.

4 The algorithm

Bartdk et al. [2011] proved that if a game is locally observable then a minimax
regret of O(v/T) is achievable against a stochastic opponent. Now we extend
their result to partial monitoring with side-information. In particular, we show
that the O(v/T) regret bound remains true in this richer model.

In this section we describe the algorithm scheme CBP-SIDE for “Confidence
Bound Partial monitoring with Side-information” that when fed with a method
that estimates the outcome distributions and their uncertainty defines a learning



strategy. In Section 5 we give a bound on the expected regret as a function of
how fast the uncertainty of the outcome distribution estimates decays. Then,
in Section 6 we present two examples that illustrate how this general bound
translates into actual regret bounds for two different classes of functions F.

The algorithm is a generalization of the algorithm “Confidence Bound Partial
monitoring” (CBP) from Bartdk et al. [2012]. Pseudocode for the algorithm is
given in Algorithm 1.

Throughout the algorithm, some statistics S is maintained that is used by the
functions GETOBSEST and GETCONFWIDTH (which are left generic for now).
The statistics might be the whole sequence of observations and actions up to
time step t — 1, or just some average of the observations and maybe the number
of times each action was chosen. After receiving the side-information for time
step t, estimates for the observation probabilities and their confidence widths
are obtained by calling the functions GETOBSEST and GETCONFWIDTH. Then
the algorithm calculates estimates of the loss differences (denoted by A~”) for
neighboring action pairs, along with their confidence widths c; ;. If, for some
pair 4, j € N the absolute value of the loss-difference estimate is greater than its
confidence width, we know that, with high probability, p; = f(z) lies in the half
space {p € RM | sgn(A;;)(¢; — £;) "p > 0}. Thus, the intersection of all these
half spaces and the probability simplex determines the convex polytope K; that
pt belongs to (with high probability), giving rise to the set of admissible actions
Q. To compute this set the method GETNEIGHBORS computes N (¢) = {{i,j} €
N 1 C;NCjNint(K,;) # 0}. Then, @ = UN(¢). Finally, the action I, from @ that
has the greatest potential of reducing the confidence width for the next rounds
is chosen and based on the information received the statistics S is updated.

5 Analysis of CBP-SIDE

In this section we provide an upper bound on the expected regret suffered by
the algorithm on any given game with any plugged-in estimate and confidence
width functions. Note that the upper bound contains the expectation of some
random values that depend on the outcomes drawn randomly at every time step.
In the next sections, we will see how these can be upper-bounded by some (small)
deterministic quantities in some specific cases.

From now on, we use the convention that for any variable v, we denote by
v(t) the value assigned to v in time step t¢.

Theorem 1. Assume that there exist numbers 1,0z, ...,0r € [0,1] and a norm
I - || such that for every time step t it holds that
P(16:(t) = Sif ()| > wi(t)) < & (1)

for everyi € N. Then, the expected regret of CBP-SIDE on game G = (L, H, F)
can be upper bounded as

T T
E[Rr] <> N& + Y E[min {4NW,wp, (t),1}],

t=1



Algorithm 1 The algorithm CBP-SIDE

1: Input: L, H, o

2: Calculate P, N, v; ;, W

3: § +INITSTATISTIC() {Some statistics as needed}
4: fort=1to T do

5: Receive side information x;

6: for each i € N do

T Gi +GETOBSEST(S, x¢) {Observation distribution estimate}
8: w; <—GETCONFWIDTH(S, z) {Confidence}
9:  end for

10:  for each {i,j} € N do

11: Ay — v ;G — v {Loss diff. estimate}
12: cij  ||vijllsws + [|vj,i] |~ w; {Confidence}
13: if |A~7;7]" 2 Ci,j then

14: halfSpace(i, j) < sgn A~Z]

15: else

16: halfSpace(i, j) < 0

17: end if

18:  end for

19:  N(t) + GETNEIGHBORS(P, N, halfSpace)
20 Q<+ UN(®) {Admissible actions}
21:  Choose I; = argmax,¢q(Wiw;) {W; = max; ||vi ||« }

22: Observe Y;
23: S <~UPDATESTATISTIC(S, z¢, I+, Y3)
24: end for

where W; = max; ||v; ;. with || - ||« being the dual norm of || - ||.

Proof. Forany i,j € N and z € X, let A, ;(x) denote the expected loss difference
of actions i and j given side-information z, written as A, ;(z) é(& — )T f().

Further, let Ai(x)émaxj A; j(z) be the “gap” between the expected loss of
action ¢ and that of an optimal action given side-information z. It is easy
to see that the expected regret of an algorithm can be rewritten as E[Ry] =
EZ;I E[Af, (x:)]. Let & be the event that some confidence width fails at time
step #. Then, B[R] = 5/ E[Ar (20)] < 2,23 Now + oz, E[An (5l
where we used that A;(z) < 1. Thus, it remains to bound Ay, (x;) assuming
that for all i € N, ||¢;(t) — Sif(x+)]] < w;(t) holds.

If i and j are in NV(t) (that is, they are neighbors at time step t), then A, ;(t)
is a “good” approximation of A; ;(x):

1A () = Agj ()] = |( = £5)7 F(e) — (0];@(t) — 0] ,d5(8))]
< i ll, 1:f (@) = GO + llvgall« 155 f () — G @)l
< Mwill, wi) + llvgall, w;(t)

=cij(t). (2)




We know from line 12 of the algorithm that if {7, j} € N(t) then A; ;(t) < ¢;;.
This together with Equation (2) gives

Aij(we) <205 (3)
Let i* be an optimal action at time step ¢ (that is, min; £ f(z¢) = ¢\ f(z;)).
Then
Altﬂ* (t) = Z Aksflvks (t) )
s=1

where I = ko, k1, ..., k- = i* is a sequence of actions such that {ks_1, ks} € N(¢)
for all 1 < s < r. This sequence always exists thanks to how the algorithm
constructs the set of admissible actions?. With the help of Equation (3) we get

A a(t) <2 en_ k. (t) =2 (H?fksfl,ks o Whomy (8) + [0k s ||, wr, (t))
s=1 s=1

S 4NW[t wr, (t) s

where in the last line we used line 20 of the algorithm and the fact that » < N,
thus finishing the proof. a

Remark 1 (On the choice of the observer vectors v; ;.). We mentioned earlier
that the choice of the observer vectors is not unique and thus we have some
freedom in choosing them. Theorem 1 indicates that for different estimators, the
best choice of the observer vectors might differ. In particular, it depends on the
norm the estimate uses: to optimize the bound of Theorem 1, we should choose
the vectors that minimize |lv; ;||«. If the norm used is the 2-norm then there is
a closed form solution for the best v; ;:

(vm‘ ) = (ST S (- ¢),

Vi

where A1 denotes the pseudo-inverse of the matrix A.

6 Examples

In this section we demonstrate the power of Theorem 1 through specific exam-
ples.

6.1 Linear side-information, least-squares estimate

In the first example, the side-information set is the probability simplex ICy of
some dimension d > 0 while the function set F is the set of all linear maps where

? For a thorough proof of this statement, we refer the reader to Bartdk et al. [2012].



the underlying matrix is a stochastic matrix of size M x d. The estimator we
use is regularized least squares. We introduce the following notations. For every
action i, let 07 = S; K € R%*4 where K is the matrix underlying the the linear
map f chosen by the opponent (thus, f(z) = Kz). Let t;(s) be the time step
when action i is chosen by the algorithm the s*® time. Let n;(¢) be the number
of times action 7 is chosen up to time step ¢. Then the regularized least squares
estimator is defined by the equation

’I’Ll(t—l)
. 2
00 = i, 3 (i = Oaucw)” + Nl

For the closed form solution we define the matrices

Xit = (Te,) T2 Tomii-1)) s Vie = (Yaw) Yu@  Yame-1)) -
Then,

~ —1
0:(t) = Viu Xi'y (Nla + X Xih)

where I is the d x d identity matrix. Let V; ; = A\jIq + Xi,tXiTt'

For some positive definite matrix S, let || - ||s denote the S-weighted 2-norm:
lv]|%2 = v7 Sv. In the rest of the paper, we will need a number of results, which,
for the sake of completeness, we recite here.

Theorem 2 (Abbasi-Yadkori et al. [2011, Theorem 1]). Let {F;}{2, a
filtration. Let {n;}1_, be a real-valued stochastic process such that 1, is Fy-
measurable and 1, is conditionally R-sub-Gaussian for some R > 0. Let {x4}72,
be an R%-valued stochastic process such that z; is Fy_i-measurable. Let A > 0.
For any t > 0, define

t t
Vtz)\I—&—szx;r, St:Zﬂsts~
s=1

s=1

Then, for any § > 0, with probability at least 1 — §, for allt > 0,

det(V;)'/? det(M)l/?)
5 :

Theorem 3 (Abbasi-Yadkori and Szepesvari [2011, Theorem 1]). Let
(0, Y1), ..., (z¢, Yiq1), z; € REY; € R™ satisfy the linear model Assumption® A1
with some L > 0, O, € R¥™>*" tr(0]6,) < S? and let F = (F;) be the associated
filtration. Consider the (?-reqularized least-squares parameter estimate O, with
reqularization coefficient A > 0. Let

ISu, -+ < 2R?log (

t—1
Vi=A+ ) x|
=0
3 Reciting this assumption is beyond the scope of this paper. In a nutshell, it says

that z; and Y; are Fi-measurable, E[Y;11|F:] = OT z; for some matrix O, the noise
Yit1 — E[Yi41|F:] is componentwise sub-Gaussian with parameter L.



be the regularized design matriz underlying the covariates. Define

2
1/2 ~1/2
By(6) = (nL\/2 log det(V;)1/2 det(\I) N A1/25> '

4]

Then, for any 0 < 6 < 1 and stopping time N, with probability at least 1 — 6,
tr ((éN —0.) Vy(On — @*)) < B (6).

Lemma 1 (Abbasi-Yadkori et al. [2011, Lemma 10]). Let z1,...,7; € R?
be such that for any 1 < s <t, ||slla < L. Let V; = M\ + Y., xx] for some
A > 0. Then,

det(V;) < (A +tL*/d)*.
In the following lemma, 21, 23, ... € R% is an arbitrary sequence of d-dimensional
vectors and V; = AI + 22:1 252] for some A > 0.
Lemma 2 (Abbasi-Yadkori and Szepesvari [2011, Lemma 10]). The fol-
lowing holds for any t > 1:

t—1
' det(V4)
2
< .
kgzomln (szHkal, 1)) < 2log det(\)

Further, when the covariates satisfy ||zt]] < ¢m,t > 0 with some ¢, > 0 w.p. 1
then

det(V;) A(n +d) + tc2,

det(AI) A(n +d)
With the help of Theorem 1 of Abbasi-Yadkori and Szepesvéri [2011] we get that
for any 0 < 6; < 1,

< (n+d)log

2
~ ~ det(V;)1/2
tr((6s(t) — 07)Vii(Bs(t) —01)T) < d? [ [2log % + oA
SN
with probability at least 1 — ;. Lemma 10 of Abbasi-Yadkori et al. [2011] gives
det(Vig) < (N 4+ na(t —1)%.

Using the above two inequalities together with tr(AT A) > ||A||% and plugging
in \; = 1 we arrive at

10:(t) = 07)Vii{ 2 < @ (v/dlog t + 21og(1/8,) + )

Now, we are ready to derive the confidence width for the estimate g;(t):
1G:(8) = qi(®)ll2 = 1(6: (t) — 67 )12
<100 = OVl Vi e
< d(Vdlogt+210(1/8) + i) llaelly - Swilt).  (4)

With these definitions we get the following result from Theorem 1:




Theorem 4. Let G = (L,H, F) be a partial-monitoring game with X = Kq and
F={zw— Kz : K € RMX4 K stochastic}. Then, the regret of CBP-SIDE run
with the least-squares estimator and confidence widths defined above satisfies

E[Rr] < C1N + CoN*/2d*VTlog T
with some G-dependent constants C1,Co > 0.
Proof. Plugging in the confidence widths from Equation (4) gives

T
> min {(4ANW,wp, (t), 1}
t=1

ni(T)
<4NZV Z min {w;(t:(s)), 1} (5)
< 4N max Wi
iEN
N ”w(T)
Z (\/dlogt ) + 2log(1/dy, (s))+01) mm{||xt||‘2/1 ,1}
i=1 ity (s)

< ANdmax W, <\/dlogT+ 2log(1/67) Zm) > V/ni(T)2dlog T (6)

< ANB/2g3/2 r%314\)/(Wi <\/dlogT—|—2log 1/6r) Zal> T2log T,

where in (6) we used Lemma 10 from Abbasi-Yadkori and Szepesvari [2011].
Setting §; = 1/t? gives the regret bound E[Ry] < C1N + CoN3/2d?*\/TlogT .
O

6.2 Multinomial logistic regression

In this section we will consider the case when for any given action the obser-
vations follow a multinomial logit model. A o-dimensional multinomial logit
model ¢? : X — K, is defined using a feature map @ : X — R7*P. Here, § € RP
is the parameter vector of the model and the dependence of ¢{ on z is given by

ex ¢ X
0(z) = ZRUED o

) = Ry — ¢(2)T0,  where N(x Zexp (@

and the feature-vectors (¢} (z))k=1,.. r are the rows of matrix &(z):
1 (x)

&(x) =
b5 (2)



The set F is implicitly defined as the set of maps such that the observations,
for all actions, follow some multinomial logit model. More precisely, let Q; be the
set of admissible symbol-distribution models; in this section these will be some
subset of all o;-dimensional multinomial logit models with some feature maps
@; 1 X — R¥Di Define F; = {f : X — Ky : Sif € Q;}, where S;f : X — K,
is given by (S;f)(z) = Sif(x), x € X. Then, F = NenF;. In what follows we
shall assume that F is non-empty. This holds, for example, when the features
underlying all actions correspond to a common underlying discretization of the
side-information set.

As in the previous section, for each action 4, the parameters 6; of the i*®
model are estimated using (constrained) maximum likelihood based on the ob-
servation available for that action. To simplify the presentation of the following
developments, from here on we fix an action ¢ and we will suppress the indexing
of the features, parameters, etc. by the action ¢. Thus, @ will denote the feature
map for action 7, § will denote the underlying parameter to be tuned, etc. Thus,
the set of admissible models is @ = {¢? : 6 € O}, where ¢ = (¢{)1<x<sn and O
is the set of admissible parameters.

The log-likelihood of the data available for the selected action is given by

n,j(t—l) o
(0) = Z Z Zi,(s),k log qz(mt,;(s))7 where Zy ) = Iiy,—ry
s=1 k=1

and n;(+), t;(-) are as in the previous section. To simplify the presentation we
will reindex the variables (Zy,(s) k, %1, (s), Y2 (s)) @S (Zr, 27, Y57 =1,2,...) (e.g.,
Zy,(1) is identified with Z, with 7 = 1). Note that the reindexing does not impact
the dependence structure of the variables. In particular, by our assumption, for
any 7 > 0 we have Y; ~ ¢! (z,) for some §* € 6. We will also drop the i
subindex of n;(t).

Let us first derive the estimator that we wish to use. A simple calculation
shows that

80 o Z {Ti—iy — Pj(2)} &/ (x)

Using Y 7_; Z- = 1, from this we get that

0

%Et(e) = Dy — g4(0), where
o n(t—1) o n(t—1)
=> Z Zrkdr(zr),  ge(0 > dw)rlar) .
k=1 7=1 k=1 7=1

Let 6, be the maximum likelihood solution: D, = gt(ét). We will show below
that ét, the maximizer of the likelihood £;(0) is uniquely defined. Since 0, might
be outside of the set of admissible parameters @, we “project it back” to ©. Our
final estimator ét is defined as the

6 = argmingee [19:(9) — ge(Bu)II7, - -



Here and in what follows, for a positive definite matrix S > 0. Further,

n(t—l) o

Vi= Z Z¢k(x7)¢k(xT)T'

7=1 k=1

The role of V; will become clear in the analysis. Note that in a practical imple-
mentation first one should check ét € O because if this holds then ét = ét.

To ensure that V; is invertible we assume that the algorithm generates Do
“virtual data points” (z;)r=1,.. Do such that

Do
Vbo.k ézm(%)ﬁﬁk(%)—r =Xl >0, 1<k<o. (7)
T=1

Note that this must be done for each action, independently of each other. The
corresponding observations (Y;);=1, . p, are arbitrarily assigned to one of the
available features. (This initialization allows one to encode prior information
about the models, too.)

In what follows we shall assume that the following holds:

Assumption A1 The following are assumed to hold:

(1) Theset © is such that for all 1 < k < ¢ it holds that 0 < infgeo zex ¢f(z) <

SUPgco,zcx gp(z) < 1.
(ii) The constant C, > 0 is known such that for any x € X, 0,0’ € 0,1 < k <

o, [pl(x) — pl (x)| < CL||®(x)(0 — 0")]|, i.e., p;,(x) is Cr-Lipschitzian.

Now, we are ready to state our first result:
Lemma 3. Let Assumption A1 hold. Define

n(t—1) o

Erk = Z‘r,k - qz* (:L'T), gt = Z Zgr,k¢k($7) .

=1 k=1

Then, if (7) holds for some Ao > 0 then there exists some constant C > 0 such
that forany 1 < j<o,ze€ X, t>1,

|qj9* (.’L’) _ qft (1.)| < OHgt“Vt—l Z |‘¢k($)||%4—1 .

k=1

Note that the constant can be computed as a function of the upper and lower
bounds for the logit model values in Assumption Al(i) and Ag.

Proof. We follow the constructions from Filippi et al. [2010]. The Hessian of the
log-likelihood takes the form

o n(t—1)

HO2 S0 =3 Y [Ty - o) e)dle)] 6u(w)6] (20).

j,k=1 1=1



Using (A1)(i), one can prove that there exists some constant Cy > 0 such that
for any 0 € ©, Hy(0) = CyV; = CygVp = CrAiol = 0 holds. Now define

1
. o ~
Since g; is continuous, by the Fundamental Theorem of Calculus,
9:(0.) — 9:(0,) = Hy (6 — 6,). (8)

Now, since H(0) = CyV; = 0, H, is non-singular and in particular

~ 1 _
Hi' < Evt t (9)
By Assumption A1(ii) and (8),

M=

0 0 2 2 iy |2
4] (@) = ¢ @I < €2 Y |(@n(), 0. — by)

x>

Q|

[

2

IN

33 [(0n@) 7 (9:0-) = u(0)))
k

Il
_

Applying Cauchy-Schwartz and (9) gives
(Dn (@), Hy M (9:(82) = 9:(00))) < lldw(@)l g1 19 (6s) — 90 (80) 2
1 ~
< Ik @)y 9e(@-) — (@)
H
Let us now bound the second term on the right-hand side:

lg¢(0-) = g6 (0) [y, —+ < llge(0x) = e (0)ly, 1 + 19:(0e) — g2(Be) |y
< 2g¢(6) = g1(6e)ll—

Here, the second inequality follows from the optimizer property of 8, and because
0. € © by assumption. Now, it remains to put together the inequalities and to
notice that ft = 0t (at) — gt(ﬁ*) O

Now, we use the result of Lemma 3 to construct the confidence widths w;(¢).
. -1

First, we upper bound the term ||€t||‘4—1. Define V, i, = Z:(:tl ) bn(z7)Pp ()"

to get

o |[n(t—1)
1€elly -1 < > erndrlar)
k=1 T=1 V—l
Do o o n(t—1)
< Z Z H¢k(x7)”VD—;k + Z Z Er kPr(Tr)
r=1k=1 ' k=1 ||[r=Do+1 1

Vi



Here we separated the terms that are obtained during the initialization as for
those terms e, are arbitrary (they do not posses the martingale property pos-
sesed by e, coming after the initialization phase). Assuming A¢ = 1 and that
the 2-norm of ¢y (z,) for any k and 7 is upper bounded by the R > 0, we get

o n(t—1)

&l < RDo®+ 3|1 Y erpdnlar)

k=1 ||T=Do+1 -1
Vik

Now, Theorem 1 of Abbasi-Yadkori et al. [2011] gives

det(V,.z)1/2

2
€]l < RDo® 4+~ [21og .

k=1

< RDo® + a\/ZD(l +n(t — 1)R2/D) + 21og(1/0,—1)) ,

Thus the confidence width w(¢) is defined as

w(t) =40, <\/(2D(1 +n(t—1)R?*/D)+2 log(l/én(t,l))) + RDO’Q) .

S lor(@)l?
k=1

Note that this confidence bound must be computed for each action.
Now we state the regret bound result using Theorem 1.

Theorem 5. With the estimate and confidence function described above, CBP-
SIDE achieves expected regret

E [Rr] < C3N + C4N*2D*VTlogT ,
where C3,Cy > 0 are some G-dependent constants.

Proof. The proof follows the same steps as that of Theorem 4 and thus it is
omitted. a

7 Conclusions

In this paper we have considered partial-monitoring problems when the learner
receives side information before he has to make a decision. Our solution shows
that the strategy of Bartdk et al. [2012] can be successfully generalized to this
setting. The main idea is to use estimators that estimate the distributions of the
observable symbols for each action given the side information. We have shown
how the knowledge of these distributions (and confidence bounds for these dis-
tributions) can be used to make inferences about the losses of the individual ac-
tions, and thus eliminate suboptimal actions. As this approach does not attempt



to directly estimate the outcome distribution, building suitable, computation-
ally efficient estimators with good confidence bounds is expected to be less of a
problem than if we attempted to estimate the distribution of the (unobserved)
outcomes. However, estimating this distribution might allow the better use of
information and thus may improve the dependence on the number of arms. It
remains for future work to see if constructing such an estimator is feasible. In gen-
eral, the dependence on the various problem dependent constants in our bounds
is expected to be improvable, too. An interesting (and probably challenging)
problem is to derive an estimator that matches existing lower bounds known for
the bandit case such as given by Auer [2003]. Finally, we note that our results
apply even when the side information is generated in a non-oblivious adversarial
fashion. This is due to the strong pointwise bounds used in the construction of
the confidence bounds.
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