Skip to main content

Partial Monitoring with Side Information

  • Conference paper
Algorithmic Learning Theory (ALT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7568))

Included in the following conference series:

  • 2369 Accesses

Abstract

In a partial-monitoring problem in every round a learner chooses an action, simultaneously an opponent chooses an outcome, then the learner suffers some loss and receives some feedback. The goal of the learner is to minimize his (unobserved) cumulative loss. In this paper we explore a variant of this problem where in every round, before the learner makes his decision, he receives some side-information. We assume that the outcomes are generated randomly from a distribution that is influenced by the side-information. We present a “meta” algorithm scheme that reduces the problem to that of the construction of an algorithm that is able to estimate the distributions of observations while producing confidence bounds for these estimates. Two specific examples are shown for such estimators: One uses linear estimates, the other uses multinomial logistic regression. In both cases the resulting algorithm is shown to achieve \(\widetilde O(\sqrt{T})\) minimax regret for locally observable partial-monitoring games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbasi-Yadkori, Y., Szepesvári, Cs.: Regret bounds for the adaptive control of linear quadratic systems. Journal of Machine Learning Research - Proceedings Track (COLT 2011) 19, 1–26 (2011)

    Google Scholar 

  • Abbasi-Yadkori, Y., Pál, D., Szepesvári, Cs.: Improved algorithms for linear stochastic bandits (extended version). In: NIPS, pp. 2312–2320 (2011), http://www.ualberta.ca/~szepesva/papers/linear-bandits-NIPS2011.pdf

  • Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. The Journal of Machine Learning Research 3, 422 (2003)

    Google Scholar 

  • Bartók, G., Pál, D., Szepesvári, Cs.: Minimax regret of finite partial-monitoring games in stochastic environments. Journal of Machine Learning Research - Proceedings Track (COLT 2011) 19, 133–154 (2011)

    Google Scholar 

  • Bartók, G., Zolghadr, N., Szepesvári, Cs.: An adaptive algorithm for finite stochastic partial monitoring. To appear in ICML (2012)

    Google Scholar 

  • Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Regret minimization under partial monitoring. Math. Oper. Res. 31(3), 562–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Dudík, M., Hsu, D., Kale, S., Karampatziakis, N., Langford, J., Reyzin, L., Zhang, T.: Efficient optimal learning for contextual bandits. In: UAI, pp. 169–178 (2011)

    Google Scholar 

  • Filippi, S., Cappé, O., Garivier, A., Szepesvári, Cs.: Parametric bandits: The generalized linear case. In: NIPS, pp. 586–594 (2010)

    Google Scholar 

  • Foster, D.P., Rakhlin, A.: No internal regret via neighborhood watch. CoRR, abs/1108.6088 (2011)

    Google Scholar 

  • Helmbold, D.P., Littlestone, N., Long, P.M.: Apple tasting. Information and Computation 161(2), 85–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Piccolboni, A., Schindelhauer, C.: Discrete Prediction Games with Arbitrary Feedback and Loss. In: Helmbold, D.P., Williamson, B. (eds.) COLT/EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 208–223. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartók, G., Szepesvári, C. (2012). Partial Monitoring with Side Information. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2012. Lecture Notes in Computer Science(), vol 7568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34106-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34106-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34105-2

  • Online ISBN: 978-3-642-34106-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics