Skip to main content

The Position Heap of a Trie

  • Conference paper
Book cover String Processing and Information Retrieval (SPIRE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7608))

Included in the following conference series:

Abstract

The position heap is a text indexing structure for a single text string, recently proposed by Ehrenfeucht et al. [Position heaps: A simple and dynamic text indexing data structure, Journal of Discrete Algorithms, 9(1):100-121, 2011]. In this paper we introduce the position heap for a set of strings, and propose an efficient algorithm to construct the position heap for a set of strings which is given as a trie. For a fixed alphabet our algorithm runs in time linear in the size of the trie. We also show that the position heap can be efficiently updated after addition/removal of a leaf of the input trie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining information in fully dynamic trees with top trees. ACM Transactions on Algorithms 1(2), 243–264 (2005)

    Article  MathSciNet  Google Scholar 

  2. Amir, A., Farach, M., Idury, R.M., La Poutré, J.A., Schäffer, A.A.: Improved dynamic dictionary matching. Information and Computation 119(2), 258–282 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor. Comput. Sci. 321(1), 5–12 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst. Sci. 48(2), 214–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blumer, A., Blumer, J., Haussler, D., Mcconnell, R., Ehrenfeucht, A.: Complete inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)

    Article  MathSciNet  Google Scholar 

  6. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.: The smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci. 40, 31–55 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Breslauer, D.: The suffix tree of a tree and minimizing sequential transducers. Theoretical Computer Science 191(1-2), 131–144 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coffman, E., Eve, J.: File structures using hashing functions. Communications of the ACM 13, 427–432 (1970)

    Article  MATH  Google Scholar 

  9. Ehrenfeucht, A., McConnell, R.M., Osheim, N., Woo, S.-W.: Position heaps: A simple and dynamic text indexing data structure. Journal of Discrete Algorithms 9(1), 100–121 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Inenaga, S., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S., Mauri, G., Pavesi, G.: On-line construction of compact directed acyclic word graphs. Discrete Applied Mathematics 146(2), 156–179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)

    Article  MathSciNet  Google Scholar 

  12. Kosaraju, S.R.: Efficient tree pattern matching. In: Proc. FOCS 1989, pp. 178–183 (1989)

    Google Scholar 

  13. Kucherov, G.: On-Line Construction of Position Heaps. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 326–337. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Manber, U., Myers, G.: Suffix arrays: A new method for on-line string searches. SIAM J. Computing 22(5), 935–948 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shibuya, T.: Constructing the suffix tree of a tree with a large alphabet. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E86-A(5), 1061–1066 (2003)

    Google Scholar 

  16. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weiner, P.: Linear pattern-matching algorithms. In: Proc. of 14th IEEE Ann. Symp. on Switching and Automata Theory, pp. 1–11 (1973)

    Google Scholar 

  18. Westbrook, J.: Fast Incremental Planarity Testing. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 342–353. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakashima, Y., I, T., Inenaga, S., Bannai, H., Takeda, M. (2012). The Position Heap of a Trie. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds) String Processing and Information Retrieval. SPIRE 2012. Lecture Notes in Computer Science, vol 7608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34109-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34109-0_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34108-3

  • Online ISBN: 978-3-642-34109-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics