Skip to main content

Group-Valued Regularization for Motion Segmentation of Articulated Shapes

  • Chapter
  • First Online:
Innovations for Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Motion-based segmentation is an important tool for the analysis of articulated shapes. As such, it plays an important role in mechanical engineering, computer graphics, and computer vision. In this chapter, we study motion-based segmentation of 3D articulated shapes. We formulate motion-based surface segmentation as a piecewise-smooth regularization problem for the transformations between several poses. Using Lie-group representation for the transformation at each surface point, we obtain a simple regularized fitting problem. An Ambrosio-Tortorelli scheme of a generalized Mumford-Shah model gives us the segmentation functional without assuming prior knowledge on the number of parts or even the articulated nature of the object. Experiments on several standard datasets compare the results of the proposed method to state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, E.J., Bregler, C., Andriacchi, T.P.: Non-rigid modeling of body segments for improved skeletal motion estimation. Comput. Model. Eng. Sci. 4, 351–364 (2003)

    MATH  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amiaz, T., Kiryati, N.: Piecewise-smooth dense optical flow via level sets. Int. J. Comput. Vis. 68(2), 111–124 (2006)

    Article  Google Scholar 

  4. Andersen, M.S., Benoit, D.L., Damsgaarda, M., Ramsey, D.K., Rasmussen, J.: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J. Biomech. 43, 268–273 (2010)

    Google Scholar 

  5. Anguelov, D., Koller, D., Pang, H.-C., Srinivasan, P., Thrun, S.: Recovering articulated object models from 3D range data. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 18–26. AUAI Press, Arlington (2004)

    Google Scholar 

  6. Arcila, R., Kartik Buddha, S., Hétroy, F., Denis, F., Dupont, F.: A framework for motion-based mesh sequence segmentation. In: International Conference on Computer Graphics, Visualisation and Compter Vision, Plzen̆, Czech Republic, 2010

    Google Scholar 

  7. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ashbrook, A.P., Fisher, R.B., Robertson, C., Werghi, N.: Segmentation of range data into rigid subsets using surface patches. In International Conference on Computer Vision, pp. 201–206. IEEE Computer Society, Washington, DC (1998)

    Google Scholar 

  9. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation – a comparative study. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, pp. 7–18. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  10. Belkin, M., Sun, J., Wang, Y.: Constructing Laplace operator from point clouds in \({\mathbb{R}}^{d}\). In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pp. 1031–1040. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Google Scholar 

  11. Belta, C., Kumar, V.: On the computation of rigid body motion. Electron. J. Comput. Kinemat. 1 (2001)

    Google Scholar 

  12. Belta, C., Kumar, V.: An SVD-based project method for interpolation on se(3). IEEE Trans. Robot. Autom. 18(3), 334–345 (2002)

    Article  Google Scholar 

  13. Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  14. Brockett, R.: Robotic manipulators and the product of exponential formula. In: Fuhrman, P. (ed.) Proceedings of the Mathematical Theory of Networks and Systems, pp. 120–129. Springer (1984)

    Google Scholar 

  15. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA 103(5), 1168–1172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Springer, New York (2008)

    MATH  Google Scholar 

  17. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

    Article  Google Scholar 

  18. Brune, C., Maurer, H., Wagner, M.: Detection of intensity and motion edges within optical flow via multidimensional control. SIAM J. Imag. Sci. 2(4), 1190–1210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Eng. 19, 421–438 (1999)

    MathSciNet  Google Scholar 

  20. Celledoni, E., Fassò, F., Säfström, N., Zanna, A.: The exact computation of the free rigid body motion and its use in splitting methods. SIAM J. Sci. Comput. 30(4), 2084–2112 (2008)

    Article  MathSciNet  Google Scholar 

  21. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28(3), Article 73 (2009)

    Google Scholar 

  22. Daniel Cremers and Steffano Soatto: Motion competition: a variational framework for piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005)

    Google Scholar 

  23. Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. SIGGRAPH Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 317–324. ACM/Addison-Wesley, New York (1999)

    Google Scholar 

  24. do Carmo, M.P.: Riemannian Geometry. Birkhäuser Verlag, Boston (1992)

    Google Scholar 

  25. Duits, R., Burgeth, B.: Scale spaces on Lie groups. In: Scale Space and Variational Methods in Computer Vision. LNCS, vol. 4485, pp. 300–312. Springer, Berlin/Heidelberg (2007)

    Google Scholar 

  26. Eells, J. Jr., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 106–160 (1964)

    Article  MathSciNet  Google Scholar 

  27. Gonzalez T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MATH  Google Scholar 

  28. Gur, Y., Sochen, N.A.: Regularizing flows over lie groups. J. Math. Imag. Vis. 33(2), 195–208 (2009)

    Article  MathSciNet  Google Scholar 

  29. Hall, B.C.: Lie Groups, Lie Algebras,and Representations, An Elementary Introduction. Springer-Verlag, 2004.

    Google Scholar 

  30. Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-like spatial priors for articulated tracking. In: European Conference on Computer Vision. LNCS, vol. 6311, pp. 425–437. Springer, Berlin/New York (2010)

    Google Scholar 

  31. Hochbaum, D., Shmoys, D.: A best possible approximation for the k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie group methods. Acta Numer. 9, 215–365 (2000)

    Article  Google Scholar 

  33. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  34. Jain, V., Zhang, H.: Robust 3D shape correspondence in the spectral domain. In: Proceedings of Shape Modeling International, pp. 118–129. IEEE Computer Society, Washington DC (2006)

    Google Scholar 

  35. James, D.L., Twigg, C.D.: Skinning mesh animations. SIGGRAPH 24(3), 399–407 (2005)

    Article  Google Scholar 

  36. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29(4), Article 102 (2010)

    Google Scholar 

  37. Kobilarov, M., Crane, K., Desbrun, M.: Lie group integrators for animation and control of vehicles. ACM Trans. Graph. 28(2), 1–14 (2009)

    Article  Google Scholar 

  38. Kompatsiaris, I., Tzovaras, D., Strintzis, M.G.: Object articulation based on local 3D motion estimation. In: Proceedings of ECMAST, pp. 378–391. Springer, London (1999)

    Google Scholar 

  39. Lee, T.-Y., Wang, Y.-S., Chen, T.-G.: Segmenting a deforming mesh into near-rigid components. Vis. Comput. 22(9), 729–739 (2006)

    Article  Google Scholar 

  40. Litke, N., Droske, M., Rumpf, M., Schröder, P.: An image processing approach to surface matching. In: Proceedings of the Eurographics Symposium on Geometry processing, pp. 207–216. Eurographics Association, Aire-la-Ville (2005)

    Google Scholar 

  41. Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: CVPR. IEEE Computer Society (2008)

    Google Scholar 

  42. Müller, A., Terze, Z.: Differential-geometric modelling and dynamic simulation of multibody systems. Strojarstvo 51(6), 597–612 (2009)

    Google Scholar 

  43. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation, 1 edn. CRC, Boca Raton (1994)

    MATH  Google Scholar 

  45. Nir, T., Kimmel, R., Bruckstein, A.M.: Variational approach for joint optic-flow computation and video restoration. Technical Report CIS-05, Technion, 2005

    Google Scholar 

  46. Nir, T., Bruckstein, A.M., Kimmel, R.: Over-parameterized variational optical flow. Int. J. Comput. Vis. 76(2), 205–216 (2008)

    Article  Google Scholar 

  47. Park, F.C., Bobrow, J.E., Ploen, S.R.: A Lie group formulation of robot dynamics. Int. J. Robot. Res. 14, 609–618 (1995)

    Article  Google Scholar 

  48. Pennec, X., Cachier, P., Ayache, N.: Understanding the “demon’s algorithm”: 3D non-rigid registration by gradient descent. In: MICCAI Proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 597–605. Springer, London (1999)

    Google Scholar 

  49. Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical shape matching. In: Bruckstein, A.M., ter Haar Romeny, B., Bronstein, A.M., Bronstein, M.M. (eds.) Scale Space and Variational Methods in Computer Vision. LNCS, vol. 6667, pp. 604–615 (2011)

    Google Scholar 

  50. Rosman, G., Bronstein, M.M., Bronstein, A.M., Wolf, A., Kimmel, R.: Group-valued regularization framework for motion segmentation of dynamic non-rigid shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 725–736 (2011)

    Google Scholar 

  51. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Lett. 60, 259–268 (1992)

    MATH  Google Scholar 

  52. Ruggeri, M.R., Patanè, G., Spagnuolo, M., Saupe, D.: Spectral-driven isometry-invariant matching of 3D shapes. Int. J. Comput. Vis. 89(2–3), 248–265 (2010)

    Article  Google Scholar 

  53. Szymon Rusinkiewicz and Marc Levoy: Efficient variants of the ICP algorithm. In: Third International Conference on 3D Digital Imaging and Modeling (3DIM), pp. 145–152. IEEE Computer Society (2001)

    Google Scholar 

  54. Sapp, B., Toshev, A., Taskar, B.: Cascaded models for articulated pose estimation. In: European Conference Computer Vision, pp. 406–420. Springer, Berlin/New York (2010)

    Google Scholar 

  55. Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008)

    Article  MATH  Google Scholar 

  56. Subbarao, R., Meer, P.: Nonlinear mean shift over Riemannian manifolds. Int. J Comput. Vis. 84(1), 1–20 (2009)

    Article  Google Scholar 

  57. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. In: SIGGRAPH, pp. 399–405. ACM, New York (2004)

    Google Scholar 

  58. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  59. Tierny, J., Vandeborre, J.-P., Daoudi, M.: Fast and precise kinematic skeleton extraction of 3D dynamic meshes. In: ICPR. IEEE Computer Society (2008)

    Google Scholar 

  60. Trobin, W., Pock, T., Cremers, D., Bischof, H.: An Unbiased Second-Order Prior for High-Accuracy Motion Estimation, pp. 396–405. Springer, Berlin/New York (2008)

    Google Scholar 

  61. Tuzel, O., Porikli, F., Meer, P.: Learning on lie groups for invariant detection and tracking. In: CVPR. IEEE Computer Society (2008)

    Google Scholar 

  62. Wang, S., Wang, Y., Jin, M., Gu, X.D., Samaras, D.: Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1209–1220 (2007)

    Article  Google Scholar 

  63. Wolf, A., Sharf, I., Rubin, M.B.: Using Cosserat point theory for estimating kinematics and soft-tissue deformation during gait analysis. In: Lenarcic, J., Stanisic, M.M. (eds.) Advances in Robot Kinematics: Motion in Man and Machine, pp. 63–70. Springer, Netherlands (2010)

    Chapter  Google Scholar 

  64. Wuhrer, S., Brunton, A.: Segmenting animated objects into near-rigid components. Vis. Comput. 26, 147–155 (2010)

    Article  Google Scholar 

  65. Yamasaki, T., Aizawa, K.: Motion segmentation for time-varying mesh sequences based on spherical registration. EURASIP J. Appl. Signal Process. 1–9, (2009). Article 346425

    Google Scholar 

  66. Yanenko, N.N.: The Method of Fractional Steps: Solution of Problems of Mathematical Physics in Several Variables. Springer, Berlin/New York (1971). Translated from Russian

    Book  MATH  Google Scholar 

  67. Yang, C., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10, 145–155 (1992)

    Article  Google Scholar 

  68. Zhang, D., Hebert, M.: Harmonic maps and their applications in surface matching. In: CVPR, vol. 2, pp. 524–530. IEEE Computer Society (1999)

    Google Scholar 

  69. Žefran, M., Kumar, V., Croke, C.: On the generation of smooth three-dimensional rigid body motions. IEEE Trans. Robot. Autom. 14(4), 576–589 (1998)

    Article  Google Scholar 

  70. Žefran, M., Kumar, V., Croke, C.: Metrics and connections for rigid-body kinematics. Int. J. Robot. Res. 18(2), 242 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Rosman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosman, G., Bronstein, M.M., Bronstein, A.M., Wolf, A., Kimmel, R. (2013). Group-Valued Regularization for Motion Segmentation of Articulated Shapes. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_12

Download citation

Publish with us

Policies and ethics