Skip to main content

Non-rigid Shape Correspondence Using Pointwise Surface Descriptors and Metric Structures

  • Chapter
  • First Online:
Innovations for Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 3146 Accesses

Abstract

Finding a correspondence between two non-rigid shapes is one of the cornerstone problems in the field of three-dimensional shape processing. We describe a framework for marker-less non-rigid shape correspondence, based on matching intrinsic invariant surface descriptors, and the metric structures of the shapes. The matching task is formulated as a quadratic optimization problem that can be used with any type of descriptors and metric. We minimize it using a hierarchical matching algorithm, to obtain a set of accurate correspondences. Further, we present the correspondence ambiguity problem arising when matching intrinsically symmetric shapes using only intrinsic surface properties. We show that when using isometry invariant surface descriptors based on eigendecomposition of the Laplace-Beltrami operator, it is possible to construct distinctive sets of surface descriptors for different possible correspondences. When used in a proper minimization problem, those descriptors allow us to explore a number of possible correspondences between two given shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In: Proceedings of the Neural Information Processing Systems (NIPS) Conference, vol. 17, pp. 33–40. MIT Press, Cambridge (2004)

    Google Scholar 

  2. Bemporad, A.: Hybrid Toolbox - User’s Guide (2004). http://www.dii.unisi.it/hybrid/toolbox.

  3. Bérard, P., Besson, G., Gallot, S.: Embedding Riemannian manifolds by their heat kernel. Geom. Funct. Anal. 4(4), 373–398 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. (PNAS) 103(5), 1168–1172 (2006)

    Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2008)

    MATH  Google Scholar 

  6. Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vis. (IJCV) 89(2–3), 266–286 (2009)

    Google Scholar 

  7. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the Laplace-Beltrami operator. In: International Symposium on 3D Data Processing Visualization and Transmission (3DPVT) (2010)

    Google Scholar 

  9. Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 25(10), 1285–1295 (2003)

    Google Scholar 

  10. Gromov, M.: Structures Metriques Pour Les Varietes Riemanniennes. Textes Math. 1 (1981). Cedic

    Google Scholar 

  11. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5–7), 667–675 (2009)

    Article  Google Scholar 

  13. Jain, V., Zhang, H., Van Kaick, O.: Non-rigid spectral correspondence of triangle meshes. Int. J. Shape Model. 13(1), 101–124 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, V., Lipman, Y., Chen, X., Funkhouser, T.: Mobius transformations for global intrinsic symmetry analysis. In: Proceedings of the Eurographics Symposium on Geometry Processing (SGP). Wiley Online Library (2010)

    Google Scholar 

  15. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. (PNAS) 95, 8431–8435 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. (Proc. SIGGRAPH) 23(3), 861–869 (2004)

    Google Scholar 

  17. Lipman, Y., Chen, X., Daubechies, I., Funkhouser, T.: Symmetry factored embedding and distance. In ACM Transactions on Graphics (Proc. SIGGRAPH) 29(4), 103 (2010)

    Google Scholar 

  18. Lipman, Y., Funkhouser, T.: Mobius voting for surface correspondence. ACM Trans. Graph. (Proc. SIGGRAPH) 28(3), 72:1–72:12 (2009). Article number 72. ACM, New York

    Google Scholar 

  19. Mateus, D., Horaud, R.P., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  20. Mémoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Point Based Graphics 2007, pp. 81–90. The Eurographics Association (2007)

    Google Scholar 

  21. Mémoli, F.: Spectral Gromov-Wasserstein distances for shape matching. In: Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment (ICCV workshop, NORDIA’09), Kyoto, Japan 2009

    Google Scholar 

  22. Mémoli, F., Sapiro, G.G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meyer, M., Desbrun, M., Schröder, P., Barr, A.: Discrete differential geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57 (2003)

    Google Scholar 

  24. Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. Comput. Graph. Forum 27(5), 1341–1348 (2008)

    Article  Google Scholar 

  25. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. In: Eurographics Symposium on Geometry Processing (SGP). Wiley Online Library (2010)

    Google Scholar 

  26. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Symmetries of non-rigid shapes. In: IEEE 11th International Conference on Computer Vision (ICCV 2007), pp. 1–7 (2007)

    Google Scholar 

  28. Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Full and partial symmetries of non-rigid shapes. Int. J. Comput. Vis. (IJCV) 89(1), 18–39 (2010)

    Google Scholar 

  29. Raviv, D., Dubrovina, A., Kimmel, R.: Hierarchical matching of non-rigid shapes. In: Internation Conference on Scale Space and Variational Methods (SSVM). Springer (2011)

    Google Scholar 

  30. Rosenberg, S.: The Laplacian on a Riemannian manifold: an Introduction to Analysis on Manifolds. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  31. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40, 99–121 (2000)

    Article  MATH  Google Scholar 

  32. Ruggeri, M.R., Saupe, D.: Isometry-invariant matching of point set surfaces. In: Proceedings of the Eurographics 2008 Workshop on 3D Object Retrieval. The Eurographics Association (2008)

    Google Scholar 

  33. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Proceedings of SGP, pp. 225–233 Eurographics Association, Aire-la-Ville (2007)

    Google Scholar 

  34. Sharma, A., Horaud, R.P.: Shape matching based on diffusion embedding and on mutual isometric consistency. In: Proceedings of the Workshop on Nonrigid Shape Analysis and Deformable Image Alignment (NORDIA) (2010)

    Google Scholar 

  35. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Eurographics Symposium on Geometry Processing (SGP). Wiley Online Library (2009)

    Google Scholar 

  36. Tevs, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.-P.: Isometric registration of ambiguous and partial data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1185–1192 (2009)

    Google Scholar 

  37. Thorstensen, N., Keriven, R.: Non-rigid shape matching using geometry and photometry. In: Asian Conference on Computer Vision, pp. 1–12. Springer (2009)

    Google Scholar 

  38. Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Proceedings of the 10th European Conference on Computer Vision (ECCV ’08), pp. 596–609. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  39. Wang, C., Bronstein, M.M., Paragios, N.: Discrete minimum distortion correspondence problems for non-rigid shape matching. Technical report, INRIA Research Report 7333, Mathématiques Appliquées aux Systèmes, École Centrale Paris, 2010

    Google Scholar 

  40. Wang, C., Bronstein, M.M., Paragios, N.: Discrete minimum distortion correspondence problems for non-rigid shape matching. Technical report, Int. Conf. Scale Space and Variational Methods (SSVM) (2011)

    Google Scholar 

  41. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.P.: Surface feature detection and description with applications to mesh matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2009)

    Google Scholar 

  42. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Comput. Graph. Forum (Proc. SGP) 27(5), 1431–1439 (2008)

    Google Scholar 

  43. Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via multi-dimensional scaling. IEEE Trans. Vis. Comput. Graph. 8(2), 198–207 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by European Community’s FP7- ERC program, grant agreement no. 267414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Dubrovina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dubrovina, A., Raviv, D., Kimmel, R. (2013). Non-rigid Shape Correspondence Using Pointwise Surface Descriptors and Metric Structures. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_15

Download citation

Publish with us

Policies and ethics