Abstract
Feature-based analysis is becoming a very popular approach for geometric shape analysis. Following the success of this approach in image analysis, there is a growing interest in finding analogous methods in the 3D world. Maximally stable component detection is a low computation cost and high repeatability method for feature detection in images.In this study, a diffusion-geometry based framework for stable component detection is presented, which can be used for geometric feature detection in deformable shapes.The vast majority of studies of deformable 3D shapes models them as the two-dimensional boundary of the volume of the shape. Recent works have shown that a volumetric shape model is advantageous in numerous ways as it better captures the natural behavior of non-rigid deformations. We show that our framework easily adapts to this volumetric approach, and even demonstrates superior performance.A quantitative evaluation of our methods on the SHREC’10 and SHREC’11 feature detection benchmarks as well as qualitative tests on the SCAPE dataset show its potential as a source of high-quality features. Examples demonstrating the drawbacks of surface stable components and the advantage of their volumetric counterparts are also presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this evaluation we used SHREC11, rather than SHREC10 that was used previously in 2D. this is due to the fact that results of the 3D and 2D versions were too similar on SHREC10, and dataset with a wider, and more challenging range and strength of transformations was needed to emphasize the difference.
References
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: shape completion and animation of people. TOG 24(3), 408–416 (2005)
Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature-a quantum mechanical approach to shape analyis. In: Proceedings of the CVPR, Colorado Springs (2011)
Boyer, E., Bronstein, A.M., Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., Litman, R., Reininghaus, J., Sipiran, I., Smeets, D., Suetens, P., Vandermeulen, D., Zaharescu, A., Zobel, V.: Shrec ’11: Robust feature detection and description benchmark. In: Proceedings of the 3DOR, Llandudno, pp. 71–78 (2011)
Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Computer Vision and Pattern Recognition, San Francisco, pp. 1704–1711 (2010)
Bronstein, A., Bronstein, M.M., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-rigid Shapes. Springer, New York (2008)
Bronstein, A., Bronstein, M.M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L.J., Kokkinos, I., Murino, V., Ovsjanikov, M., et al.: SHREC 2010: robust feature detection and description benchmark. In: Eurographics Workshop on 3D Object Retrieval (2010)
Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian manifolds. Research Report RR-6968, INRIA (2009)
Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006)
Couprie, M., Bertrand, G.: Topological grayscale watershed transformation. In: SPIE Vision Geometry V Proceedings, San Diego, vol. 3168, pp. 136–146 (1997)
Dey, T.K., Li, K., Luo, C., Ranjan, P., Safa, I., Wang, Y.: Persistent heat signature for pose-oblivious matching of incomplete models. Comput. Graph. Forum 29(5), 1545–1554 (2010)
Digne, J., Morel, J.-M., Audfray, N., Mehdi-Souzani, C.: The level set tree on meshes. In: Proceedings of the Fifth International Symposium on 3D Data Processing, Visualization and Transmission, Paris (2010)
Donoser, M., Bischof, H.: 3d segmentation by maximally stable volumes (msvs). In: Proceedings of the 18th International Conference on Pattern Recognition, vol. 1, pp. 63–66. IEEE Computer Society, Los Alamitos (2006)
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret.Comput. Geom. 28(4), 511–533 (2002)
Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, vol. 1, pp. 157–186. Springer, Berlin (2005)
Forssen, P.E.: Maximally stable colour regions for recognition and matching. In: Proceedings of the CVPR, Minneapolis, pp. 1–8 (2007)
Huang, Q.X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25(3), 569–578 (2006)
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. Trans. PAMI 21(5), 433–449 (1999)
Kimmel, R., Zhang, C., Bronstein, A.M., Bronstein, M.M.: Are mser features really interesting? IEEE Trans. PAMI 33(11), 2316–2320 (2011)
Levy, B.: Laplace-Beltrami eigenfunctions towards an algorithm that understands geometry. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, pp. 13. IEEE Computer Society, Los Alamitos (2006)
Litman, R., Bronstein, A.M., Bronstein, M.M.: Diffusion-geometric maximally stable component detection in deformable shapes. Comput. Graph. 35, 549–560 (2011)
Lowe, D.: Distinctive image features from scale-invariant keypoint. IJCV 60(2), 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)
Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57. Springer, Berlin (2003)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. IJCV 65(1), 43–72 (2005)
Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Proc. 15(11), 3531–3539 (2006)
Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. Comput. Graph. Forum 27(5), 1341–1348 (2008)
Ovsjanikov, M., Bronstein, A.M., Bronstein, M.M., Guibas, L.J.: Shape google: a computer vision approach to isometry invariant shape retrieval. In: Computer Vision Workshops (ICCV Workshops), Kyoto, pp. 320–327 (2009)
Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)
Raviv, D., Bronstein, M.M., Bronstein, A.M., Kimmel, R.: Volumetric heat kernel signatures. In: Proceedings of the ACM Workshop on 3D Object Retrieval, Firenze, pp. 39–44 (2010)
Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, Cambridge, pp. 101–106 (2005)
Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the SGP, Barcelona, pp. 225–233 (2007)
Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proceedings of the CVPR, Madison, vol. 2, pp. 1470–1477 (2003)
Skraba, P. Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: Proceedings of the NORDIA, San Francisco, pp. 45–52 (2010)
Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Transactions on Graphics (Proceedings of the SIGGRAPH), Los Angeles, vol. 23, pp. 399–405 (2004)
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28, 1383–1392 (2009)
Thorstensen, N., Keriven, R.: Non-rigid shape matching using geometry and photometry. In: Computer Vision – ACCV 2009, Xi’an, vol. 5996, pp. 644–654 (2010)
Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3d object retrieval and partial matching. In: Proceedings of the 3DOR, Munich, pp. 21–28 (2009)
Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Computer Vision ECCV 2006. Lecture Notes in Computer Science, vol. 3952, pp. 589–600. Springer, Berlin/Heidelberg (2006)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. PAMI, 13(6), 583–598 (2002)
Wardetzky, M., Mathur, S., Kaelberer, F., Grinspun, E.: Discrete laplace operators: no free lunch. In: Proceedings of the of Eurographics Symposium on Geometry Processing, Barcelona, pp. 33–37 (2007)
Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: Proceedings of the CVPR, Miami, pp. 373–380 (2009)
Acknowledgements
We are grateful to Dan Raviv for providing us his volume rasterization and Laplacian disretization code. M. M. Bronstein is partially supported by the Swiss High-Performance and High-Productivity Computing (HP2C) grant. A. M. Bronstein is partially supported by the Israeli Science Foundation and the German-Israeli Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Litman, R., Bronstein, A.M., Bronstein, M.M. (2013). Stable Semi-local Features for Non-rigid Shapes. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-34141-0_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34140-3
Online ISBN: 978-3-642-34141-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)