Skip to main content

Queries for Data Analysis

  • Conference paper
Advances in Intelligent Data Analysis XI (IDA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7619))

Included in the following conference series:

Abstract

If we view data as a set of queries with an answer, what would a model be? In this paper we explore this question. The motivation is that there are more and more kinds of data that have to be analysed. Data of such a diverse nature that it is not easy to define precisely what data analysis actually is. Since all these different types of data share one characteristic – they can be queried – it seems natural to base a notion of data analysis on this characteristic.

The discussion in this paper is preliminary at best. There is no attempt made to connect the basic ideas to other – well known – foundations of data analysis. Rather, it just explores some simple consequences of its central tenet: data is a set of queries with their answer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calders, T., Goethals, B.: Mining All Non-derivable Frequent Itemsets. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 74–85. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Cilibrasi, R., Vitányi, P.: The google similarity distance. IEEE Transactions on Knowledge and Data Engineering 19(3) (2007)

    Google Scholar 

  3. Codd, E.F.: A relational model of data for large shared data banks. Communications of the ACM 13(6), 377–387 (1970)

    Article  MATH  Google Scholar 

  4. Grünwald, P.D.: Minimum description length tutorial. In: Grünwald, P.D., Myung, I.J. (eds.) Advances in Minimum Description Length. MIT Press (2005)

    Google Scholar 

  5. Hand, D.J.: Statistics and the theory of measurement. Journal of the Royal Statistical Society. Series A 159(3), 445–492 (1996)

    Google Scholar 

  6. Mac Lane, S.: Categories for the Working Mathematician. Springer (1971)

    Google Scholar 

  7. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications. Springer (1993)

    Google Scholar 

  8. Lloyd, J.W.: Logic for Learning. Springer (2003)

    Google Scholar 

  9. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. In: Data Mining and Knowledge Discovery, pp. 241–258 (1997)

    Google Scholar 

  10. Meijer, E., Bierman, G.M.: A co-relational model of data for large shared data banks. Commun. ACM 54(4), 49–58 (2011)

    Article  Google Scholar 

  11. Nies, A.: Computability and Randomness. Oxford University Press (2009)

    Google Scholar 

  12. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web (1999)

    Google Scholar 

  13. Pei, J., Tung, A.K.H., Han, J.: Fault tolerant pattern mining: Problems and challenges. In: DMKD (2001)

    Google Scholar 

  14. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)

    Google Scholar 

  15. Siebes, A., Kersten, R.: A structure function for transaction data. In: Proc. SIAM conf. on Data Mining (2011)

    Google Scholar 

  16. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: Proc. SIAM Conf. Data Mining, pp. 393–404 (2006)

    Google Scholar 

  17. Spivak, D.I.: Functorial data migration. Information and Computation 217, 31–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. van Leeuwen, M., Vreeken, J., Siebes, A.: Compression Picks Item Sets That Matter. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 585–592. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Vreeken, J., Siebes, A.: Filling in the blanks - krimp minimization for missing data. In: Proceedings of the IEEE International Conference on Data Mining (2008)

    Google Scholar 

  20. Webb, G.I.: Self-sufficient itemsets: An approach to screening potentially interesting associations between items. ACM Transactions on Knowledge Discovery from Data 4(1) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siebes, A. (2012). Queries for Data Analysis. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34156-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34155-7

  • Online ISBN: 978-3-642-34156-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics