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Abstract. In this paper we argue' that parallel and/or distributed com
pute resources can be used differently: instead of focusing on speeding up 
algorithms, we propose to focus on improving accuracy. In a nutshell, the 
goal is to tune data mining algorithms to produce better results in the 
same time rather than producing similar results a lot faster. We discuss 
a number of generic ways of tuning data mining algorithms and elabo
rate on two prominent examples in more detail. A series of exemplary 
experiments is used to illustrate the effect such use of parallel resources 
can have. 

1 Introduction 

Research in Parallel Data Mining traditionally is focused on accelerating the 
analysis process - understandable in times of limited compute power and in
creasinglY' complex analysis algorithms. More recently, however, data mining 
research has split into two main themes: "big data" type analyses, where the 
goal is still the efficient mining of insights from increasingly large datasets on 
the one hand and more elaborate mining algorithms in order to find better and 
more representative patterns in not necessarily such large data repositories, on 
the other. 

With regard to the latter, usage of parallel compute engines has not gained 
much attention as the compute time tends to be less critical - especially in times 
when computational resources even on desktop computers are available in such 
abundance. Nevertheless many if not all relevant a lgorithms rely on heuristics or 
user supplied parameters to somewhat reduce the otherwise entirely infeasible 
hypothesis space. 

In this paper , we argue that modern architectures, which provide access to 
numerous parallel computing resources, emphasized by the recent advance of 
multi-core architectures, can also be utilized to reduce the effect of these user 
parameters or other algorithmic heuristics . Instead of trying to provide the same 
results faster then conventional a lgorithms we claim that interest in this area of 
analysis methods should also consider using parallel resources to provide better 
results in similar time. In the following we refer to this use of parallel resources 
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as tuning models (in parallel) to distinguish it from the more common attempts 
to simply accelerate algorithms. 

Obviously a number of algorithms can very easily be extended in such a 
manner. Most prominent are, of course, simple ensemble methods. Instead of 
sequentially training a bag of models it is embarassingly simple to train those 
in parallel. However, for many well knowI1 methods this type of straight forward 
parallelization is not applicable. Boosting already requires information about 
other models predictions and many other, presumably easy algorithms are not 
as easily parallelizable. Just try to parallelize a decision tree induction or a 
clustering algorithm. In addition, early experiments indicate that simply ran
domizing the collection of models is suboptimal - steering the parallel search by 
controlling diversity offers substantial promise here. 

In this paper we propose two generic approaches for this type of parallel 
search algorithm. The resulting framework is demonstrated on two well-known 
algorithms that form the basis for many data mining methods. 

Please note that this paper is meant as a demonstration of how parallel re
sources can be used for improving the quality of solutions of heuristic data mining 
algorithms in general. Therefore the parallel approaches discussed in this paper 
are simple and intuitive and do not aim to outperform optimized algorithms 
of the same type in practice. We strongly believe that the increasing amount 
of available parallel commodity hardware will lead to a rethinking of the design 
of heuristic data mining algorithms and ·the aim of this paper lies on this line of 
research. 

2 Generic Approaches to Parallel TIming 

In order to better describe the generic approaches we are proposing in order 
to tune the accuracy of data mining algorithms let us first look at standard 
algorithms and how they search for a matching hypothesis in a given set of 
training data. Many of these algorithms (and these are the ones we are interested 
in here) follow some iterative scheme, where at each iteration a given model is 
refined. We can formalize this as follows: 

m' = s (r(m)) 

where m is the original model, for instance a neural network or a decision tree 
under construction, and m' is the next intermediate model, e.g. the neural net
work after one more gradient descent step or after another branch has been 
added to the decision tree. The two functions s(·) and r(-) describe a select ion 
resp. refinement operation. In the case of the neural network, the refinement 
operator represents the gradient descent step and there is no real selection op
erator. For the decision tree, the refinement operator would actually return a 
set of expanded decision trees and the selection operator picks the one with the 
highest information gain . 

As mentioned in the introduction, most existing algorithms employ some sort 
of heuristic optimization. Gradient descent performs a local optimization during 
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Fig. 1. The classic heuristic (often greedy) search algorithm. On the left (a), the current 
model m is depicted in green, the refinement options r(m) are shown grey. The selection 
operator s picks the yellow refinement (b) and the next level then continues the search 
based on this choice. 

the refinement operator. Greedy searches usually embed heuristics in both op
erators, they only generate a subset of all possible refinements and the selection 
operator has usually no way of estimating absolute quality but has to rely on a 
local heuristic, i.e. a greedy heuristic, as shown in Figure 1. 

The formalization shown above now allows us to motivate the two general 
parallelization tuning methods - we can reduce (or - in extreme cases - even 
elimillate) the influence of the heuristics affecting either the sclcctioll functioll 
sO or the refinement operator r(·) or both . 

2.1 Widening 

This first approach, called Widening invests parallel resources into reducing the 
impact of the refinement heuristic by investigating more alternatives in parallel. 
In essence, this is similar to a beam search. Using the formalization from above, 
we can express widening as follows: 

{m~ , ... ,mk/} = s({r(md, .. ·,r(mk)})' 

The refinement operator 1'(-) does not necessarily change in this context and it 
can, as above, also return an entire set of refined models. The main point here 
is that we invest our available k parallel resources into running r(·) in parallel 
k t imes resul ting in a much larger set of refined models. The selection function 
s(·) is now not forced to pick one locally optimal model but instead picks k' 
which are then refined again in parallel. In many cases k = k', i.e. the number 
of explored models (or the width of the beam) will remain constant . 

It is worth noting that this approach allows us not only to perform a beam 
search and explore the currently best k models but also to use a selection function 
which rewards diversity of the models and hence supports broader exploration of 
the hypothesis space. In recent work on the use of beam search in data mining 
algorithms evidence has arisen that such diverse space exploration is actually 
beneficia l. 
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Fig. 2. Widening. From a set of models Tn (green Circles), the refinement operator 
creates (in parallel) several sets of models (grey) , shown on the left (a). The selection 
now picks a subset of the refined models (yellow circles in (b) and the search continues 
from t hose on the right (c). 

Figure 2 shows how the widening approach works. At each step, the algorithm 
selects the k best models to be explored in the next step. 

2.2 Deepening 

The second approach, called Deepening fo cuses on reducing the impact of the 
selection heuristic: 

m' = Sdccp (r(m)) . 

In contrast to the widening approach, here only the selection function changes. 
For example, with regard to a decision tree: in order to determine the best split at 
each step only the immediate spli ts are considered. As we will describe in the next 
section , one could imagine looking further ahead to better estimate the quality 
of each spli t. In effect, the idea is to look forward and subsequently investigate 
how future steps of the refinement and selection process will be affected by the 
current choice. One could formalize this as follows: 

Sdccp (r(m)) = f (s (r(m)), S (r'(s(r(m)))) , . .. ) 

so the deeper selection operator is a function f of the normal, one-step-look
ahead selection criteria and the quality of further refinements of the original 
model. Figure 3 shows how the deepening approach works. At each step, the 
algorithm explores additional future models, selects the currently best model 
which, in turn , will lead to the best model in the future. 

3 Example One: Tuned Set Covering 

To illustrate the potential of the approaches discussed in the previous section, 
we chose the set cover problem, a problem that underlies quite a few data mining 
algorithms, for instance when trying to find the minimum number of rules or 
item sets . 
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Fig. 3. Deepening. From one model m (green circles), t he refinement operator creates 
(in parallel) several sets of models (grey), shown on the left (a) . Note how, in order to 
apply the selection operator each of those choices is now expanded at a much greater 
depth (in parallel) using the classic heuristic search · process. The selection then picks 
the refined models (yellow circles in (b)) that indicate the best performance at the 
deeper level, however the search continues from the models at the first level (c). 

Although finding an optimal solution for the set cover problem is an NP
complete problem [1], a greedy algorithm, which at each step selects the subset 
with the largest number of uncovered elements, is widely used. Regardless of its 
simplicity, this classic greedy algorithm performs surprisingly well [2]. It can be 
shown that it achieves an approximation ratio of H(n), where n is the size of 
the set to be covered. 

However , please bear in mind that we are not interested in presenting a com
petitive new parallel set covering algorithm but that we are using this problem 
to illustrate how the tuning approaches presented above can be utilised. Hence 
we skip reviewing the state of the art in algorithmic improvements for the set 
covering problem here. 

3.1 The Set Cover Problem 

We consider the standard (unweighted) Set Cover problem. Given a universe X 
of n items and a collection S of m subsets of X : S = {Sl , S2, .. . , Sm }. We 
assume that the union of all of the sets in S is X, with IXI = n: USiES Si = X. 
The aim is to find a sub-collection of sets in S, of minimum size, that covers a ll 
elements of X. 

3.2 Greedy Set Covering 

The greedy algorithm [2] attempts to construct the minimal set cover in the fol
lowing way. It starts with the empty set being the temporary cover and at each 
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step selects and adds a single subset to it . The subset selected is the one, which 
contains the most elements that are not yet covered by the temporary cover. 
To be consistent with the terminology previously defined: if C is the temporary 
cover, a refinement generated by T(C) represents the addition of a single subset, 
not yet part of C, to C. From all the possible refinements, generated by r'O, 
the one with the largest number of elements is chosen as the new temporary 
cover. 

3.3 Tuning of Set Covering 

Two possible tuning possibili t ies of the Set Cover algorithm can be derived from 
the simple algorithm described above. 

Widened Set Covering. In contrast to the greedy algorithm, the widening 
of the greedy algorithm builds k temporary covers in parallel. The fo cus in 
this algorithm is to use resources to explore (possibly very) large number of 
refinements in parallel, depending on the available resources. Here k is referred 
to as "widening" parameter. 

A single iteration of the widened algorithm then operates as follows. Let 
C1 , ... Ck represent the k temporary covers. A refinement of Ci is created by 
adding a new subset to Ci . For each C i , the k refinements which contain the 
largest number of elements, are selected. This results in k *k refinements in total. 
From those, the top k refinements are selected , resulting in k new temporary 
covers C~, ... ,C~. The choice of parameter k depends on the available compute 
resources. If k parallel resources (cores, computers) are available the running 
time of the algorithm will remain the same as the one for the simple greedy 
algorithm. As we will see later, the quality of the solutions will increase with 
larger k, due to more options being explored. 

Deepened Set Covering. Unlike the widening of the greedy algorithm, the 
focus of the deepening is to not explore several options in parallel but use the 
additional computing resources to evaluate the quality of the candidates in more 
depth. This results in a less greedy algorithm as the choice at each step is based 
on more knowledge about the "future" quality of that solution. 

At a given step, the algorithm explores the k refinements, which cover the 
largest number of elements. From them the algorithm selects only one as a new ' 
temporary cover. To select from the k refinements in the selection stage, the 
algorithm builds "deeper covers" for each of them l steps ahead in parallel. The 
deeper cover for a refinement i is built by performing the simple greedy selection 
l times start ing from refinement i . We .will refer to this deeper cover as l -deep 
coveT. The refinement with the largest l-deep cover is selected as a temporary 
cover for the next iteration of the algorithm. A breadth parameter k determines 
how many refinements will be explored at each stage, and a depth parameter l 
determines how many steps "ahead" will the algorithm do to build the future 
covers. 
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3.4 Experimental Evaluation 

In order to compare the greedy heuristic and the two tuning approaches - widen
ing and deepening, we used a number of publicly available benchmarks. We 
explicitly selected data sets, which pose a challenge for the simple greedy algo
rithm in order to demonstrate the merits of the tuned approaches. The greedy 
set covering algorithm is usually at a disadvantage when at many steps it has to 
select among many equally good subsets. So we picked data sets exhibiting this 
property. 

The two data sets discussed here, Rail - 507 and Rail - 582, stem from 
the OR library [3] and arose from a real-life railway-crew scheduling problem. 
Rail - 507 is based on IX507 1 = 507 elements and IS507 1 = 63, 009 sets whereas 
Rail - 582 consists of IX 582 1 = 582 elements and IS 582 1 = 55,515 sets. For 
both data benchmarks the sets themselves are fairly small none of them has 
a cardinality of more than 12. So the greedy algorithm quite naturally often 
encounters cases where different alternatives have exactly the same benefit. In 
addit ion , we ignored the cost information as we are dealing with the unicost 
version of the set cover problem here. 

To assess a possible improvement achieved by parallelization, we compared 
the sizes of the obtained solutions, e.g. the number of sets in the final cover 
that each of the algorithm returns. The focus of our experiments lies on how 
the quality of the solutions changes, as we vary the number of used parallel re
sources. To evaluate the average performance of the algorithms with respect to 
the parallelization parameter, for each data set each algorithm was run random
ized 50 times and the mean and the standard deviation of the size of the cover 
was reported . If our initial hypothesis is correct, the 'average performance should 
go up (here: the size of the cover should go down) when more parallel resources 
are used. Note that for the deepening the depth parameter is set to be maximal 
for all experiments . That is , during the selection the look ahead is conducted 
unti l the complete cover is reached. 
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Fig. 4. Results for Widening on two data sets from the OR library (see text for details). 
As expected, with increasing widening of the search, the performance gets bet ter and 
the standard deviation goes down . 
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Fig. 5. Results for Deepening on two data sets from the OR library showing a similar 
trend to the widening approach 

Figures 4 and 5 summarize the results. Note that number of paral lel resource 
= 1 corresponds to the simple greedy heuristic . From the results one can conclude 
that when increasing the parallel resources, the mean of the obtained set cover 
decreases. A decrease in standard deviation also indicates that we are indeed 
converging towards a optimal solution . 

4 Example Two: Tuned Decision Tree Induction 

As a second example we investigated the well known decision tree models. The 
most prominent examples for decision tree learning are CART [4], ID3 [5], 
C4.5 [6] but many variations exist. Typically, however , they all start from a 
root node and grow the tree by splitting the data set recursively until a given 
stopping criterion is satisfied. The partitioning (or spli tting) criterion is usu
ally based on a greedy approach which picks the locally best a ttributes a t each 
node. To determine the quality of a potential split , a measure for the expected 
information gain is derived from the available training data. 

Mapping this to our representation, the refinement operator would create a 
series of possible splits at each node and the selection operator picks the spli t 
with the highest information gain (or another, similar measure of split quality). 

4.1 Widening D ecision Tree 

From the discussion above it is quite obvious that random forests [7] are an 
incarnation of our widening approach by creating k trees on random data (and 
feature) subsets. However, in the end, the entire ensemble is used which is not 
the focus of our work - classic widening will pick the best model from the k 
models that were generated. 

A straightforward extension would be to simply start with random starting 
points but poll the resulting trees (and the various possible refinements from 
each model in the current set) and use a selection criteria which rewards both 
tree size as well as accuracy estimates. 
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4.2 Deepening Decision Tree 

Deepening decision tree induction requires more advance algorithmic modifica
tions. The refinement operator expands candidate refinement solutions in parallel 
deeper until a given level k. A greedy selection operator is then employed to se
lect the best solution to explored at the next iteration based on this deeper split 
quali ty estimate. 

This seems an obvious extension of the standard decision tree learning meth
ods which one would expect intuitively to perform well. However, the impact of 
the local, greedy choices on la rger decision trees is not quite as dramatic as one 
expects. "Missed" opportuni ties at higher levels can easily be fixed by splitting 
(then just in neighboring branches) on that same at tribute further down. In [8] 
such effects of "look ahead strategies" have been mentioned before and in [9] it 
was even reported that applying look-ahead in decision trees can produce trees 
that are both larger and less accurate than trees built by the normal algorithm . 

In order to emphasize the potential benefit of tuning on this type of model 
learning we focused on decision stumps [10] which are essentially trees limited to 
a certain depth. Instead of constructing the tree until a certain criterion is met , 
these algorithms stop when a certain depth is reached. These types of models 
should be more sensitive to suboptimal local greedy choices when selecting splits 
and one should expect to see an effect of the deepening procedure described 
above. 

4.3 Experimental Evaluation 

Figure 6 shows results from widening (left) and deepening (right) on the Libras
Movement Dataset 1 with decision stumps limited to a depth of 6. We again ran 
50 experiments on randomly chosen subsets of the training data (picking 90% 
of the data randomly each time). Also here we can see how the quality of the 
decision tree (here measured by the performance on the test data) improves when 
we conduct deeper refinements. Also the standard deviation of the accuracy goes · 
down, indicating that we are converging towards an optimal solution. 

5 Related Work 

A wealth of literature exists relating to parallelized approaches for data mining 
and other algorithms. However to the best of our knowledge, no attempt has been 
made to employ parallel resources to improve accuracy in a similarly structured 
way. Nevertheless, many of the ideas presented elsewhere can be cast into the 
framework presented here one way or the other. 

Some st rategies, similar to the deepening strategy we discussed here, have 
already been proposed as a means to improve the accuracy of existing heuristics 
on sequential a lgorithms. For instance in [11] a "lookahead-search" approach to 
improve some greedy algorithms was discussed. With regard to decision trees in 

1 UCI Machine Learning Repository, http : //archive . ics. uci . edu/ml/index . html 
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Fig. 6. Widening and Deepening decision tree induction (see text for details) 

particular a number of sequential approaches have employed look-ahead strate
gies. In [9] the authors compare no lookahead and one-levellookahead and show 
the benefit of this type of lookahead were small or even none which confirms our 
observations with unstumped decision trees discussed earlier. 

In [12] Lhe lookahead approach is used diflerenLly. InsLead of Lrying Lo find the 
split that produces the optimal tree, a greedy measure is used to find the locally 
optimal binary split. The subtree that is grown after this split is considered for 
the split decision. Their results show the algorithm to be useful in many cases. 
And finally in [13] two other lookahead-based algorithms for anytime induction 
of decision trees are presented. The depth-k look-ahead algorithm tests the effect 
of a split further down the tree until level k and in the second algori thm, each 
candidate split is evaluated by summing up the estimated size of each subtree, 
taking the smallest subtree as the optimal subtree at this stage. 

Even more literature exists for the Set Cover problem as this is one of the 
most fundamental and best studied problems in optimization. A large amount 
of heuristics to solve it are also available, some of which focus on improving the 
accuracy of the resul t, others on the efficiency of obtaining a solution. Many 
of those ideas could also be resued for widening or deeping the search . The 
performance of the simple greedy algorithm comes very close to the best possi
ble result for a polynomial-time algorithm, with optimality guarantees of In(n). 
Various sequential algorithms have been developed to improve the bound and 
achieve log c factor from the optimal solution, such as [1 4], where the authors 
propose deterministic polynomial time method for finding a set cover in a set 
system (X, R) of VC-dimension d such that the size of the solution is at most 
O(dlog(dc)) of the optimal size, c. 

Multiple parallel approaches exist for the set covering problem to improve 
the efficiency of the existing sequential algorithms. In [15] parallelization has 
been used to improve efficiency by "bucketing" utility values (the number of 
new elements covered) by factors of (1 + () and processing sets within a bucket 
in parallel. The bucketing approach ensures diversity of the explored hypothesis 
space, which could be particularly interesting for the purposes discussed in this 
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paper. In [16], a similar approach has been employed, again resulting in a linear
work RNC (1 + E)Hn-approximation algorithm. 

A veritable flood of publications is available on various aspects of other data 
mining algorithms for various types of distributed and parallel architectures. 
The focus of those papers is almost exclusively on reproducing the same results 
as the sequential algorithm but in a much shorter time. However the scope of 
this paper is not to present yet another parallel algorithm that outspeeds the 
sequential version. Instead, we present a general approach of how increasing 
computing power can be used to increase accuracy and reduce the impact of 
the underlying heuristics. Nevertheless in order to develop truly useful tuned 
algorithms it is worth investigating this literature and learning from the lessons 
presented there. 

6 Conclusion 

We have introduced a generic approach to make use of parallel resources to 
improve the accuracy and reduce the heuristic bias of common data mining 
algorithms. We demonstrated this concept on two greedy heuristics - the greedy 
algorithm underlying the standard solution for the Set Cover problem and the 
induction of decision tree stumps. We presented two approaches for this type of 
"algorithm tuning": deepening and widening, both based on relaxing the greedy 
criterion for hypothesis refinement and selection. 

Again, we emphasize that this type of work is not a ll that novel - research 
in the parallel computing community has already focused quite extensively on 
optimizing all sorts of search strategies. However, in the context of data mining, 
such approaches have not yet be.en utilized. In contrast to ensemble or other 
set-of-model approaches, we believe it is often still desirable to find a single 
(interpretable) model. Utilizing parallel resources to find a better quality model 
in similar Lime to seqnential approaches o[ers potential here, especially when 
the tuning approaches presented above are combined with diversity criteria to 
enforce a thorough exploration of the hypothesis space. 

We believe that this type of approach can also be used to estimate the quality 
of a solution, i.e . how close to the optimum the current solution actually is . This 
may enable us to build systems that, after a certain time, can provide hints as to 
how much more time (and/or computing resources) would be needed to achieve 
a certain model quality. 
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