Abstract
Measuring proximity in a social network is an important task, with many interesting applications, including person search and link prediction. Person search is the problem of finding, by means of keyword search, relevant people in a social network. In user-centric person search, the search query is issued by a person participating in the social network and the goal is to find people that are relevant not only to the keywords, but also to the searcher herself. Link prediction is the task of predicting new friendships (links) that are likely to be added to the network. Both of these tasks require the ability to measure proximity of nodes within a network, and are becoming increasingly important as social networks become more ubiquitous.
This chapter surveys recent work on scoring measures for determining proximity between nodes in a social network. We broadly identify various classes of measures and discuss prominent examples within each class. We also survey efficient implementations for computing or estimating the values of the proximity measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamic, L., Adar, E.: How to search a social network. In: VLDB, pp. 217–225 (1987)
Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte carlo methods in pagerank computation: When one iteration is sufficient. SIAM J. Numer. Anal. 45(2), 890–904 (2007)
Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized pagerank on mapreduce. In: SIGMOD Conference, pp. 973–984 (2011)
Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pagerank. PVLDB 4(3), 173–184 (2010)
Balan, A.O., Traldi, L.: Preprocessing minpaths for sum of disjoint products. IEEE Trans. Reliability 52(3), 289–295 (2003)
Barabasi, A.L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311(3-4), 590–614 (2002)
Brander, A., Sinclair, M.: A comparative study of k-shortest path algorithms. In: Proc. 11th UK Performance Engineering Workshop for Computer and Telecommunications Systems (1995)
Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’el, N., Ronen, I., Uziel, E., Yogev, S., Chernov, S.: Personalized social search based on the user’s social network. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 1227–1236. ACM, New York (2009), http://doi.acm.org/10.1145/1645953.1646109
Cohen, S., Kimelfeld, B., Koutrika, G., Vondrák, J.: On principles of egocentric person search in social networks. In: First International Workshop on Searching and Integrating New Web Data Sources, Seattle, Washington (2011)
Davies, D., Barber, D.: Communication Networks for Computers. John Wiley, London (1973)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)
Dotson, W.P., Gobien, J.O.: A new analysis technique for probabilistic graphs. IEEE Trans. Circuits and Systems 26(10), 855–865 (1979)
Doyle, P., Snell, J.: Random walks and electical networks. The Mathematical Association of America (1984)
Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (1998)
Esfandiar, P., Bonchi, F., Gleich, D.F., Greif, C., Lakshmanan, L.V.S., On, B.-W.: Fast Katz and Commuters: Efficient Estimation of Social Relatedness in Large Networks. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 132–145. Springer, Heidelberg (2010)
Fishman, G.S.: A comparison of four monte carlo methods for estimating the probability of s-t connectedness. IEEE Trans. Reliability 35(2), 145–155 (1986)
Floyd, R.W.: Algorithm 97: Shortest path. Communications of the ACM 5(6), 345 (1962)
Fogaras, D., Rácz, B.: Towards Scaling Fully Personalized PageRank. In: Leonardi, S. (ed.) WAW 2004. LNCS, vol. 3243, pp. 105–117. Springer, Heidelberg (2004)
Foster, K.C., Muth, S.Q., Potterat, J.J., Rothenberg, R.B.: A faster katz status score algorithm. Computational and Mathematical Organization Theory 7, 275–285 (2001)
Frank, H., Frisch, I.: Communication, Transmission and Transportation Networks. Addison Wesley, Reading (1971)
Gao, J., Jim, R., Zhou, J., Yu, J.X., Jiang, X., Wang, T.: Relational approach for shortest path discovery over large graphs. PVLDB 5(4), 358–369 (2012)
Goldberg, A., Harrelsons, C.: Computing the shortest path: A* search meets graph theory. In: SODA (2005)
Gubichev, A., Bedathur, S.J., Seufert, S., Weikum, G.: Fast and accurate estimation of shortest paths in large graphs. In: CIKM, pp. 499–508 (2010)
Guy, I., Perer, A., Daniel, T., Greenshpan, O., Turbahn, I.: Guess who?: enriching the social graph through a crowdsourcing game. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, CHI 2011, pp. 1373–1382. ACM, New York (2011), http://doi.acm.org/10.1145/1978942.1979145
Hadjiconstantinou, E., Christofides, N.: An efficient implementation of an algorithm for finding k shortest simple paths. Networks 34, 88–101 (1999)
Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th International Conference on World Wide Web, WWW 2003, pp. 271–279. ACM, New York (2003), http://doi.acm.org/10.1145/775152.775191
Katoh, N., Ibaraki, T., Mine, H.: An efficient algorithm for k shortest simple paths. Networks 12 (1982)
Katz, G.J., Kider Jr., J.T.: All-pairs shortest-paths for large graphs on the gpu. In: Graphics Hardware, pp. 47–55 (2008)
Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)
Koren, Y., North, S.C., Volinsky, C.: Measuring and extracting proximity graphs in networks. TKDD 1(3) (2007)
Liben-Nowell, D., Kleinberg, J.M.: The link-prediction problem for social networks. In: CIKM (2003)
Liben-Nowell, D., Kleinberg, J.M.: The link-prediction problem for social networks. JASIST 58(7), 1019–1031 (2007)
Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)
Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1(2), 226–251 (2004)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Tech. rep., Stanford University (1998)
Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: CIKM (2009)
Rapoport, A.: Spread of information through a population with socio-structural bias i: Assumption of transitivity. Bulletin of Mathematical Biophysics 15(4), 523–533 (1953)
Sarlós, T., Benczúr, A.A., Csalogány, K., Fogaras, D., Ráz, B.: To randomize or not to randomize: space optimal summaries for hyperlink analysis. In: World Wide Web, pp. 297–306 (2006)
Song, H.H., Cho, T.W., Dave, V., Zhang, Y., Qiu, L.: Scalable proximity estimation and link prediction in online social networks. In: IMC (2009)
Terruggia, R.: A comparison of four monte carlo methods for estimating the probability of s-t connectedness. Thesis. Università degli Studi di Torino (2010)
Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)
Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., de Castro Reis, D., Ribeiro-Neto, B.A.: Efficient search ranking in social networks. In: CIKM, pp. 563–572 (2007)
Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In: ICDM, pp. 322–331 (2007)
Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 981–990. ACM, New York (2010), http://doi.acm.org/10.1145/1772690.1772790
Xiao, Y., Wu, W., Pei, J., Wang, W., He, Z.: Efficiently indexing shortest paths by exploiting symmetry in graphs. In: EDBT (2009)
Yen, J.Y.: Finding the k shortest loopless paths in a network. Management Science 17 (1971)
Yen, J.Y.: Another algorithm for finding the k shortest loopless network paths. In: Proc. of 41st Mtg. Operations Research Society of America 20 (1972)
Zhao, X., Salaa, A., Wilson, C., Zheng, H., Zhao, B.Y.: Orion: Shortest path estimation for large social graphs. In: Proceedings of the 3rd Workshop on Online Social Networks, WOSN (2010)
Zhao, X., Salaa, A., Zheng, H., Zhao, B.Y.: Efficient shortest paths on massive social graphs. In: Proceedings of 7th International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom (2011)
Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. The European Physical Journal B—Condensed Matter and Complex Systems 71(4), 623–630 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Cohen, S., Kimelfeld, B., Koutrika, G. (2012). A Survey on Proximity Measures for Social Networks. In: Ceri, S., Brambilla, M. (eds) Search Computing. Lecture Notes in Computer Science, vol 7538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34213-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-34213-4_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34212-7
Online ISBN: 978-3-642-34213-4
eBook Packages: Computer ScienceComputer Science (R0)